83 research outputs found

    Beam-based alignment of TTF RF-gun using V-Code

    Get PDF
    The beam dynamics simulation code V [1,2], based on the Ensemble Model [3], is being developed for on-line simulations. One practical application of the V-Code is the beam-based alignment (BBA) of accelerator (TESLA Test Facility) elements. Before we started with BBA thefirst beam position monitor (BPM1), located after the RFgun cavity, showed non-zero readings. Moreover the readings depended on RF-power, RF-phase and primary and secondary solenoid currents. This effect could be explained by misalignments of the gun and the solenoids. Such beam offsets must be compensated by means of steering coils but such a procedure can be one of the sources of increased emittances. Based on the V-Code solver a dedicated utility was developed for alignment studies. The laser beam mismatch at the cathode, as well as the primary and secondary solenoid displacements were considered as probable reasons for the misalignment of the beam. A new method for the correction of these misalignments combines a sequence of measurements, simulations and the elimination of the largest imperfections. This semi-automatic method applied to the TTF RF-gun yields a centering of the beam within the accuracy of the BPM1

    Investigation of TTF injector alignment with the simulation Code V

    Get PDF
    The exact alignment of accelerator components is of crucial importance for the production of low emittance beams. Once a beam-line section is set up, a supplementary correction of misalignments implies the knowledge of its magnitude which is difficult to determine using conventional adjusting instruments. An excellent alternative to measure existing misalignments of accelerator components is to vary machine parameters and compare the behaviour of the beam with results obtained from a simulation. It is obvious that time consuming particle tracking programmes are notappropriate to reach this aim. Regarding computing time, the on-line simulation code V is advantageous compared to other beam dynamics programmes. The theoretical basis of V-Code, the “Ensemble Model”, consists of selfconsistent equations for the ensemble parameters that arederived from the Vlasov equation. The requirement to simulate misalignments such as offsets and tilts led to the development of the ALIGNMENT UTILITY which utilizes the solver of V-Code. The new utility enabled us to investigate the beam-line alignment of the TESLA Test Facility injector.This contribution presents the theoretical background and an illustrating example of the optimization process

    Ribonuclease Activity of Dis3 Is Required for Mitotic Progression and Provides a Possible Link between Heterochromatin and Kinetochore Function

    Get PDF
    BACKGROUND: Cellular RNA metabolism has a broad range of functional aspects in cell growth and division, but its role in chromosome segregation during mitosis is only poorly understood. The Dis3 ribonuclease is a key component of the RNA-processing exosome complex. Previous isolation of the dis3-54 cold-sensitive mutant of fission yeast Schizosaccharomyces pombe suggested that Dis3 is also required for correct chromosome segregation. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the progression of mitosis is arrested in dis3-54, and that segregation of the chromosomes is blocked by activation of the mitotic checkpoint control. This block is dependent on the Mad2 checkpoint protein. Double mutant and inhibitor analyses revealed that Dis3 is required for correct kinetochore formation and function, and that this activity is monitored by the Mad2 checkpoint. Dis3 is a member of the highly conserved RNase II family and is known to be an essential subunit of the exosome complex. The dis3-54 mutation was found to alter the RNaseII domain of Dis3, which caused a reduction in ribonuclease activity in vitro. This was associated with loss of silencing of an ura4(+) reporter gene inserted into the outer repeats (otr) and central core (cnt and imr) regions of the centromere. On the other hand, centromeric siRNA maturation and formation of the RITS RNAi effector complex was normal in the dis3-54 mutant. Micrococcal nuclease assay also suggested the overall chromatin structure of the centromere was not affected in dis3-54 mutant. CONCLUSIONS/SIGNIFICANCE: RNase activity of Dis3, a core subunit of exosome, was found to be required for proper kinetochore formation and establishment of kinetochore-microtubule interactions. Moreover, Dis3 was suggested to contribute to kinetochore formation through an involvement in heterochromatic silencing at both outer centromeric repeats and within the central core region. This activity is likely monitored by the mitotic checkpoint, and distinct from that of RNAi-mediated heterochromatin formation directly targeting outer centromeric repeats

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore