28 research outputs found

    High prevalence of direct repeat unit types of 10di, 8 h and 8i among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated in Tehran, Iran

    No full text
    Abstract Background The emergence of methicillin-resistant Staphylococcus aureus (MRSA) is a main concern in burn care centers worldwide. The some reports of MRSA in Iran suggested that MRSA with type SCCmec III is common among burn patients. The aim of this study was to determine the prevalence, virulence genes, and antimicrobial susceptibility of the direct repeat units (dru) types of MRSA with SCCmec IIIA isolated from burn wounds in a burn care center in Tehran, Iran. Methods In total, 165 S. aureus isolates were collected from clinical samples. In order to detect MRSA isolates, the mecA gene was amplified through the polymerase chain reaction (PCR) method. Antimicrobial susceptibility was tested using the disc agar diffusion test. Moreover, the PCR method was applied to determine SCCmec types, virulence genes, and antimicrobial resistance genes. The dru region was sequenced and thereby, dru types and dru repeats were identified. A similarity matrix was used to create minimum spanning tree (MST). Results The prevalence of MRSA was 69% (114 out of 165 isolates). Most of MRSA isolates (61 out of 114, 53.5%) were SCCmec type IIIA. All MRSA isolates were vancomycin-susceptible and more than 68% of MRSA isolates with SCCmec type IIIA were mupirocin resistant. The successful dru typing of isolates with SCCmec type IIIA revealed fourteen different dru types. There were two new dru types, namely dt10di and dt7aj. MST analysis indicated the presence of the three clusters of dt10di (cluster I), dt8i-dt8 h (cluster II), and dt11c-dt10ao-dt11dd-dt11a-dt10a (cluster III). There were significant differences between clusters I and II respecting antimicrobial resistance pattern and virulence genes. Conclusion Three main dru clusters are prevalent in the study setting. The main dru types in the setting are dt10di, dt8i, and dt8 h. Dru typing can be used to differentiate MRSA strains with SCCmec IIIA

    Prevalence of metallo-β-lactamase-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran

    No full text
    Abstract Carbapenem-resistant Pseudomonas aeruginosa (CRPA) has been considered a major cause of infection and mortality in burn patients, especially in developing countries such as Iran. One of the most common mechanisms of carbapenem resistance is production of metallo-β-lactamases [(MBLs), including Verona Integron-encoded Metallo-beta-lactamase (VIM), imipenemase (IMP), São Paulo metalo-beta-lactamase (SPM), German imipenemase (GIM), New Delhi metallo-beta-lactamase (NDM), Dutch imipenemase (DIM), Adelaide imipenemase (AIM), Seoul imipenemase (SIM), KHM, Serratia metallo-β-lactamase (SMB), Tripoli metallo-β-lactamase (TMB), and Florence imipenemase (FIM)]. Limited information is available on the prevalence of CRPA and MBLs in Iranian burn units. We performed a systematic search by using different electronic databases, including Medline (via PubMed), Embase, Web of Science, and Iranian Database. Of 586 articles published from January 2000 to December 2016, 14 studies reporting the incidence of CRPA and MBLs as detected by molecular methods in burn patients were included in this review. The meta-analyses showed that the prevalence of CRPA, IMP, and VIM was 76.8% (95% CI 67.5-84.1), 13.1% (95% CI 4.7-31.5), and 21.4% (95% CI 14.6-30.1), respectively, in Iranian burn centers and remaining MBLs types have not yet been detected. There was a high prevalence of MBLs and CRPA in Iranian burn centers. Therefore, these measurements should be applied nationally and rigorous infection control measures and antimicrobial stewardship will be the major pillars to control multidrug resistant microorganisms, such as CRPA

    Distribution and Characteristics of Bacteria Isolated from Cystic Fibrosis Patients with Pulmonary Exacerbation

    No full text
    Background. Cystic fibrosis (CF) is an inherited recessive disorder characterized by recurrent and persistent pulmonary infections, resulting in lung function deterioration and early mortality. Methods. A cross-sectional study was conducted on the bacterial profile and antibiotic resistance pattern of 103 respiratory specimens from CF patients with signs of pulmonary exacerbation. Antibiotic susceptibility testing and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa isolates were performed by the Kirby–Bauer disc diffusion method and microtiter plate assay, respectively. Molecular typing of S. aureus and P. aeruginosa isolates was carried out by spa typing and repetitive extragenic palindromic element PCR. Results. In a total of 129 isolates, the most prevalent organisms were S. aureus (55.3%) and P. aeruginosa (41.7%). Other less prevalent bacterial isolates include coagulase-negative staphylococci, Escherichia coli, klebsiella spp., Enterobacter spp., and Achromobacter xylosoxidans. The highest rate of resistance for S. aureus was observed to azithromycin and erythromycin (80%), ciprofloxacin (52.3%), clindamycin (44.6%) and tetracycline (43%). Twenty percent of S. aureus isolates were methicillin-resistant S. aureus (MRSA) and 47.6% were MDR S. aureus. For P. aeruginosa isolates the highest resistance was to cefepime (38.3%) and levofloxacin (33.3%) and 20% showed MDR phenotype. Conclusion. Our study demonstrated a significant decline in the prevalence of P. aeruginosa infections in comparison to previous studies. We found S. aureus to be more prevalent in younger patients, whereas mucoid P. aeruginosa showed a shift in prevalence toward older ages. Molecular typing methods showed great diversity between isolates

    Nasal carriage rate of methicillin resistant Staphylococcus aureus among Iranian healthcare workers: a systematic review and meta-analysis

    No full text
    Abstract Globally, methicillin-resistant Staphylococcus aureus (MRSA) remains a major cause of healthcare-associated infections. Healthcare workers (HCWs), patients and the environment may act as reservoirs for the spread of MRSA to patients and other HCWs. Screening and eradication of MRSA colonization is an effective method of reducing the MRSA infection rate. There are limited data on the prevalence of MRSA among Iranian HCWs. We performed a systematic search by using different electronic databases including Medline (via PubMed), Embase, Web of Science, and Iranian Databases (from January 2000 to July 2016). Meta-analysis was performed using the Comprehensive Meta-Analysis (Biostat V2.2) software. The meta-analyses showed that the prevalence of S. aureus and MRSA among HCWs were 22.7% [95% confidence interval (CI): 19.3-26.6] and 32.8% (95% CI: 26.0-40.4) respectively. The high rate of nasal MRSA carriage among Iranian HCWs has been attributed to poor compliance to hand hygiene, injudicious use of antibiotics, and ineffective infection control and prevention measures. The rational use of antibiotics plus strict infection control are the main pillars for controlling multidrug resistant microorganisms such as MRSA in the hospital setting. These measurements should be applied nationally

    Virulence factors, antimicrobial susceptibility and molecular characterization of Streptococcus agalactiae isolated from pregnant women

    No full text
    Forty-one Streptococcus agalactiae isolates collected from pregnant women at 35–37 weeks of gestation were analysed for their capsular types, antimicrobial resistance determinants, distribution of virulence factors and genetic relatedness using PCR and multiplex PCR. Capsular type III was predominant (65.8%), followed by capsular type II (14.6%), Ib (7.3%), and V(4.9%). All isolates were susceptible to penicillin, vancomycin, linezolid and quinupristin-dalfopristin. Resistance to tetracycline, erythromycin and clindamycin were found in 97.6%, 24.4%, and 14.6% of isolates, respectively. The most common antimicrobial resistance gene was tetM found in 97.6% of the isolates followed by ermTR and ermB found in 12% and 7.3% of isolates, respectively. The most common virulence gene was hly (100%), followed by scpB (97.6%), bca (97.6%), rib (53.65%) and bac (4.9%). The insertion sequence IS1548 was found in 63.4% of isolates. By multi locus variable number of tandem repeat analysis (MLVA) typing, 30 different allelic profiles or MLVA types (MTs) were identified. The most frequent was the MT1 (5/41, 12.2%) and followed by MT2 (4/41, 9.75%). Our data revealed that population structure of these isolates is highly diverse and indicates different MLVA types

    Additional file 2 of Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates

    No full text
    Additional file 2. Effect of nitrate, arginine, and ferrous in combination with antibiotics on antibiotic resistance. The data represent results of studying effect of different concentrations of nitrate, arginine, and ferrous on antibiotic resistance of selected strains in the presence of amikacin, tobramycin, and ciprofloxacin

    Additional file 1 of Determining effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of clinical strains of Pseudomonas aeruginosa in biofilm-inspired alginate encapsulates

    No full text
    Additional file 1. Information about the clinical strains. The data represent results of oxidase and antibiogram tests on strains, shows if the strains are mucoid and produce pigments, and some information about the patients that the strains have been isolated from

    Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium.

    No full text
    Bacterial biofilms are one of the major issues in the treatment of chronic infections such as chronic wounds, where biofilms are typically polymicrobial. The synergy between species can occur during most polymicrobial infections, where antimicrobial resistance enhances as a result. Furthermore, self-produced extracellular polymeric substance (EPS) in biofilms results in a high tolerance to antibiotics that complicates wound healing. Since most antibiotics fail to remove biofilms in chronic infections, new therapeutic modalities may be required. Disruption of EPS is one of the effective approaches for biofilm eradication. Therefore, degradation of EPS using enzymes may result in improved chronic wounds healing. In the current study, we investigated the efficacy of trypsin, β-glucosidase, and DNase I enzymes on the degradation of dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus in a wound-like medium. These species are the two most common bacteria associated with biofilm formation in chronic wounds. Moreover, the reduction of minimum biofilm eradication concentration (MBEC) of meropenem and amikacin was evaluated when combined with enzymes. The minimum effective concentrations of trypsin, β-glucosidase, and DNase I enzymes to degrade biofilms were 1 μg/ml, 8 U/ml, and 150 U/ml, respectively. Combination of 0.15 μg/ml trypsin and 50 U/ml DNase I had a significant effect on S. aureus-P. aeruginosa biofilms which resulted in the dispersal and dissolution of all biofilms. In the presence of the enzymatic mixture, MBECs of antibiotics showed a significant decrease (p < 0.05), at least 2.5 fold. We found that trypsin/DNase I mixture can be used as an anti-biofilm agent against dual-species biofilms of S. aureus-P. aeruginosa

    Evaluation of Mannosidase and Trypsin Enzymes Effects on Biofilm Production of Pseudomonas aeruginosa Isolated from Burn Wound Infections.

    Get PDF
    Biofilm is an important virulence factor in Pseudomonas aeruginosa and has a substantial role in antibiotic resistance and chronic burn wound infections. New therapeutic agents against P. aeruginosa, degrading biofilms in burn wounds and improving the efficacy of current antimicrobial agents, are required. In this study, the effects of α-mannosidase, β-mannosidase and trypsin enzymes on the degradation of P. aeruginosa biofilms and on the reduction of ceftazidime minimum biofilm eliminating concentrations (MBEC) were evaluated. All tested enzymes, destroyed the biofilms and reduced the ceftazidime MBECs. However, only trypsin had no cytotoxic effect on A-431 human epidermoid carcinoma cell lines. In conclusion, since trypsin had better features than mannosidase enzymes, it can be a promising agent in combatting P. aeruginosa burn wound infections

    Image_1_Multiplex high-resolution melting assay for simultaneous detection of five key bacterial pathogens in urinary tract infections: A pilot study.jpg

    No full text
    The diagnosis of urinary tract infections (UTIs) is usually based on the results of urine culture, but it is time-consuming, labor-intensive and has a low sensitivity. The aim of this study was to develop multiplex high-resolution melting assay (MHRM) for the simultaneous detection of five common bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Staphylococcus saprophyticus, Enterococcus faecalis, and group B streptococci (GBS)) directly from urine samples. A total of 287 urine specimens were evaluated by HRM assay and the results were compared with the conventional culture method. Five different melt curves generated and differentiated five bacterial pathogens. The detection limit of the MHRM assay was 1.5 × 103 CFU/ml for E. coli and K. pneumoniae and 1.5 × 102 CFU/ml for S. saprophyticus, E. faecalis and GBS. Compared to culture, the specificity of the MHRM assay ranged from 99.3 to 100%, and sensitivity 100% for all test pathogens. The MHRM assay developed in the current study might be functional tool for the diagnosis of UTIs and has the potential for direct detection of the organism in the clinical samples. Additionally, it creates results in less than 5 h, helping clinicians to start treatment with appropriate antimicrobial agents. This method could be a useful supplement to urine culture.</p
    corecore