221 research outputs found
On unbounded bodies with finite mass: asymptotic behaviour
There is introduced a class of barotropic equations of state (EOS) which
become polytropic of index at low pressure. One then studies
asymptotically flat solutions of the static Einstein equations coupled to
perfect fluids having such an EOS. It is shown that such solutions, in the same
manner as the vacuum ones, are conformally smooth or analytic at infinity, when
the EOS is smooth or analytic, respectively.Comment: 6 page
Mechanics of floating bodies
We introduce and study the mechanical system which describes the dynamics and statics of rigid bodies of constant density floating in a calm incompressible fluid. Since much of the standard equilibrium theory, starting with Archimedes, allows bodies with vertices and edges, we assume the bodies to be convex and take care not to assume more regularity than that implied by convexity. One main result is the (Liapunoff) stability of equilibria satisfying a condition equivalent to the standard 'metacentric' criterion
The static spherically symmetric body in relativistic elasticity
In this paper is discussed a class of static spherically symmetric solutions
of the general relativistic elasticity equations. The main point of discussion
is the comparison of two matter models given in terms of their stored energy
functionals, i.e., the rule which gives the amount of energy stored in the
system when it is deformed. Both functionals mimic (and for small deformations
approximate) the classical Kirchhoff-St.Venant materials but differ in the
strain variable used. We discuss the behavior of the systems for large
deformations.Comment: 19 pages, 8 figure
Late time behaviour of the maximal slicing of the Schwarzschild black hole
A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be
evolved into a foliation of the -region of the spacetime by maximal
surfaces with the requirement that time runs equally fast at both spatial ends
of the manifold. This paper studies the behaviour of these slices in the limit
as proper time-at-infinity becomes arbitrarily large and gives an analytic
expression for the collapse of the lapse.Comment: 18 pages, Latex, no figure
Vacuum Spacetimes with Future Trapped Surfaces
In this article we show that one can construct initial data for the Einstein
equations which satisfy the vacuum constraints. This initial data is defined on
a manifold with topology with a regular center and is asymptotically
flat. Further, this initial data will contain an annular region which is
foliated by two-surfaces of topology . These two-surfaces are future
trapped in the language of Penrose. The Penrose singularity theorem guarantees
that the vacuum spacetime which evolves from this initial data is future null
incomplete.Comment: 19 page
(In)finiteness of Spherically Symmetric Static Perfect Fluids
This work is concerned with the finiteness problem for static, spherically
symmetric perfect fluids in both Newtonian Gravity and General Relativity. We
derive criteria on the barotropic equation of state guaranteeing that the
corresponding perfect fluid solutions possess finite/infinite extent. In the
Newtonian case, for the large class of monotonic equations of state, and in
General Relativity we improve earlier results
- …