482 research outputs found

    Co-simulation of algebraically coupled dynamic subsystems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 108-110).In the manufacturing industry out-sourcing/integration is becoming an important business pattern (not a clear statement-integration still done in house-component design and manufacturing outsourced). An engineering system often consists of many subsystems supplied by different companies. Bridge between thoughts is weak. Object-oriented modeling is an effective tool for modeling of complex coupled systems. However, subsystem models have to be assembled and compiled before they can produce simulation results for the coupled system. Compiling models into simulations? is time consuming and often requires a profound understanding of the models. Also, the subsystem makers cannot preserve their proprietary information in the compilation process. This research is intended to address this problem by extending object-oriented modeling to object-oriented simulation called co-simulation. Co-Simulation is an environment in which we can simultaneously run multiple independent compiled simulators to simulate a large coupled system. This research studies a major challenge of object-oriented simulation: incompatible boundary conditions between subsystem simulators caused by causal conflicts. The incompatible boundary condition is treated as an algebraic constraint. The high index of the algebraic constraint is reduced by defining a sliding manifold, which is enforced by a discrete-time sliding mode controller. The discrete-time approach fits well with the numerical simulation since it can guarantee numerical stability.(cont.) A Boundary Condition Coordinator (BCC), which implements the discrete-time controller, makes the incompatible boundary condition compatible. Multi-rate sliding controllers are developed to guarantee the stability of the sliding manifold with any integration step size for the subsystem simulators. A multi- rate sliding mode scheme is specially devised to minimize information disclosure from the subsystem simulators and to facilitate pure numerical computation. The influence of the BCCs on the rest of the subsystem simulators is studied using the input-output linearization theory. The Co-Simulation software environment is developed in Java. Subsystem simulators and BCCs run as independent processes in the Co-Simulation environment. Class templates containing all necessary functions for different types of subsystems are defined. Engineers can easily build a subsystem simulator by simply providing only the mathematical model, which will be hidden after the subsystem simulator is made. Integration engineers can assemble subsystem simulators into simulation of the large coupled system by merely making connections among subsystems. The object-oriented class design makes it possible to extend the Co-Simulation over the Internet or to compile subsystems into a single thread simulator.by Bei Gu.Ph.D

    Tensor product representation of topological ordered phase: necessary symmetry conditions

    Full text link
    The tensor product representation of quantum states leads to a promising variational approach to study quantum phase and quantum phase transitions, especially topological ordered phases which are impossible to handle with conventional methods due to their long range entanglement. However, an important issue arises when we use tensor product states (TPS) as variational states to find the ground state of a Hamiltonian: can arbitrary variations in the tensors that represent ground state of a Hamiltonian be induced by local perturbations to the Hamiltonian? Starting from a tensor product state which is the exact ground state of a Hamiltonian with Z2\mathbb{Z}_2 topological order, we show that, surprisingly, not all variations of the tensors correspond to the variation of the ground state caused by local perturbations of the Hamiltonian. Even in the absence of any symmetry requirement of the perturbed Hamiltonian, one necessary condition for the variations of the tensors to be physical is that they respect certain Z2\mathbb{Z}_2 symmetry. We support this claim by calculating explicitly the change in topological entanglement entropy with different variations in the tensors. This finding will provide important guidance to numerical variational study of topological phase and phase transitions. It is also a crucial step in using TPS to study universal properties of a quantum phase and its topological order.Comment: 10 pages, 6 figure

    The universal "heartbeat" oscillations in black hole systems accross the mass-scale

    Full text link
    The hyperluminous X-ray source (HLX-1, the peak X-ray luminosity 1042erg s1\sim 10^{42}\rm erg\ s^{-1}) near the spiral galaxy ESO 243-49 is possibly the best candidate for intermediate mass black hole (IMBH), which underwent recurrent outbursts with a period of 400\sim 400 days. The physical reason for this quasi-periodic variability is still unclear. We explore the possibility of radiation-pressure instability in accretion disk by modeling the light curve of HLX-1, and find that it can roughly reproduce the duration, period and amplitude of the recurrent outbursts HLX-1 with an IMBH of ~10^5Msun. Our result provides a possible mechanism to explain the recurrent outbursts in HLX-1. We further find a universal correlation between the outburst duration and the bolometric luminosity for the BH sources with a very broad mass range (e.g., X-ray binaries, XRBs, HLX-1 and active galactic nuclei, AGNs), which is roughly consistent with the prediction of radiation-pressure instability of the accretion disk. These results imply that "heartbeat" oscillations triggered by radiation-pressure instability may appears in different-scale BH systems.Comment: ApJ in press; 15 pages, 5 Figure

    A general model for collaboration networks

    Full text link
    In this paper, we propose a general model for collaboration networks. Depending on a single free parameter "{\bf preferential exponent}", this model interpolates between networks with a scale-free and an exponential degree distribution. The degree distribution in the present networks can be roughly classified into four patterns, all of which are observed in empirical data. And this model exhibits small-world effect, which means the corresponding networks are of very short average distance and highly large clustering coefficient. More interesting, we find a peak distribution of act-size from empirical data which has not been emphasized before of some collaboration networks. Our model can produce the peak act-size distribution naturally that agrees with the empirical data well.Comment: 10 pages, 10 figure

    Uptake and transport of a novel anticancer drug-delivery system: lactosyl-norcantharidin-associated N-trimethyl chitosan nanoparticles across intestinal Caco-2 cell monolayers

    Get PDF
    In this paper, novel liver-targeting nanoparticles (NPs), lactosyl-norcantharidin (Lac-NCTD)-associated N-trimethyl chitosan (TMC) NPs (Lac-NCTD-TMC-NPs), were prepared using ionic cross-linkage. The physical properties, particle size, and encapsulation efficiency of the nanoparticles were then investigated. The continuous line of heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2) cell monolayer model was used to study the transport mechanism of Lac-NCTD, and the effects of factors such as time, temperature, pH level, drug concentration, enhancers, and inhibitors. This model was also used to indicate the differences among Lac-NCTD, Lac-NCTD-associated chitosan NPs (Lac-NCTD-CS-NPs), and Lac-NCTD-TMC- NPs in the absorption and transportation of membranes. Drug concentration levels were measured using high-performance liquid chromatography. Active transport and paracellular transport were suggested to be both the primary and secondary mechanisms for Lac-NCTD absorption, respectively. Lac-NCTD uptake and absorption were not controlled by pH levels, but were positively correlated to uptake time, and negatively correlated to temperature. The basolateral to apical apparent permeability coefficients (Papps) were higher than those of the apical to basolateral values. The inhibitor of P-glycoprotein and the multidrug resistance-associated protein 2 significantly enhanced the uptake amount of Lac-NCTD. Compared with Lac-NCTD, Lac-NCTD-CS-NPs and Lac-NCTD-TMC-NPs significantly enhanced drug absorption. Additionally, the latter exhibited stronger action. Lac-NCTD-NPs could penetrate the plasma membrane of Caco-2 cells and translocate into the cytoplasm and even into the nucleus. Nanoparticles were uptaken into Caco-2 cells through the endocytosis pathway

    Gapped Two-body Hamiltonian whose Unique Ground State is Universal for One-way Quantum Computation

    Full text link
    Many-body entangled quantum states studied in condensed matter physics can be primary resources for quantum information, allowing any quantum computation to be realized using measurements alone, on the state. Such a universal state would be remarkably valuable, if only it were thermodynamically stable and experimentally accessible, by virtue of being the unique ground state of a physically reasonable Hamiltonian made of two-body, nearest neighbor interactions. We introduce such a state, composed of six-state particles on a hexagonal lattice, and describe a general method for analyzing its properties based on its projected entangled pair state representation.Comment: 5 pages, 4 figure

    Clinical and Microbiological Characteristics of a Community-Acquired Carbapenem-Resistant Escherichia coli ST410 Isolate Harbouring blaNDM-5-Encoding IncX3-Type Plasmid From Blood

    Get PDF
    Objectives: The aim of this research was to investigate the clinical and microbiological characteristics of a case of community-acquired carbapenem-resistant Escherichia coli isolated from a patient with a bloodstream infection in China.Methods:Escherichia coli Huamei202001 was recovered from the first blood culture from a patient hospitalised in China. An antimicrobial susceptibility test was performed, and the genome was sequenced on an Illumina HiSeq X 10 platform with a 150-bp paired-end approach. The generated sequence reads were assembled using Unicycler, and the whole genome sequence data were analysed using bioinformatics tools. Moreover, the patient and her main family members obtained a faecal sample screening test for CRE, the positive strain was further isolated and the identification and antimicrobial susceptibility testing was performed.Results:Escherichia coli Huamei202001 belonged to sequence type 410. In addition, a blaNDM-5-encoding IncX3-type plasmid was responsible for the spreading of carbapenem resistance. Only the patient was detected as having a positive faecal sample screening test for CRE. Strain Fec01 was identified as E. coli, and the antibiotic susceptibility profile was the same as that of E. coli Huamei202001.Conclusions:Escherichia coli Huamei202001 is defined as community-acquired carbapenem-resistant Enterobacteriaceae. The clone ST410 that harbours the blaNDM-5-encoding IncX3-type plasmid is causing new high-risk clones globally. Thus, infection control measures should be strengthened to curb the dissemination of IncX3
    corecore