
Co-Simulation of Algebraically Coupled Dynamic Subsystems

by

Bei Gu

B.S., Mechanical Engineering
Shanghai Jiao Tong University, 1992

M.S., Mechanical Engineering
Arizona State University, 1997

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

© 2001 Massachusetts Institute of Technology
All rights reserved

Signature of Author_

Certified by

Accepted by

MASSACHUSETTS INSTITUTW
OF TECHNOLOGY

DEC 1 0 2001

UIBRARIES

BARKER

Department VMechanical Engineering
August 25, 2001

H. Harry Asada, Ford Professor of M/chanical Engineering
Thesis Supervisor

Ain A. Sonin
Chairman, Department Graduate Committee

I"

Co-Simulation of Algebraically Coupled Dynamic Subsystems

By

Bei Gu

Submitted to the Department of Mechanical Engineering
on August 24, 2001 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in
Mechanical Engineering

ABSTRACT
In the manufacturing industry out-sourcing/integration is becoming an important business pattern

(not a clear statement-integration still done in house--component design and manufacturing outsourced).
An engineering system often consists of many subsystems supplied by different companies. Bridge
between thoughts is weak. Object-oriented modeling is an effective tool for modeling of complex coupled
systems. However, subsystem models have to be assembled and compiled before they can produce
simulation results for the coupled system. Compiling models into simulations? is time consuming and
often requires a profound understanding of the models. Also, the subsystem makers cannot preserve their
proprietary information in the compilation process. This research is intended to address this problem by
extending object-oriented modeling to object-oriented simulation called co-simulation. Co-Simulation is
an environment in which we can simultaneously run multiple independent compiled simulators to
simulate a large coupled system.

This research studies a major challenge of object-oriented simulation: incompatible boundary
conditions between subsystem simulators caused by causal conflicts. The incompatible boundary
condition is treated as an algebraic constraint. The high index of the algebraic constraint is reduced by
defining a sliding manifold, which is enforced by a discrete-time sliding mode controller. The discrete-
time approach fits well with the numerical simulation since it can guarantee numerical stability. A
Boundary Condition Coordinator (BCC), which implements the discrete-time controller, makes the
incompatible boundary condition compatible. Multi-rate sliding controllers are developed to guarantee
the stability of the sliding manifold with any integration step size for the subsystem simulators. A multi-
rate sliding mode scheme is specially devised to minimize information disclosure from the subsystem
simulators and to facilitate pure numerical computation. The influence of the BCCs on the rest of the
subsystem simulators is studied using the input-output linearization theory.

The Co-Simulation software environment is developed in Java. Subsystem simulators and BCCs
run as independent processes in the Co-Simulation environment. Class templates containing all necessary
functions for different types of subsystems are defined. Engineers can easily build a subsystem simulator
by simply providing only the mathematical model, which will be hidden after the subsystem simulator is
made. Integration engineers can assemble subsystem simulators into simulation of the large coupled
system by merely making connections among subsystems. The object-oriented class design makes it
possible to extend the Co-Simulation over the Internet or to compile subsystems into a single thread
simulator.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering

2

To Mom and Dad

3

Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor H. Harry Asada, for

his intellectual guidance, constant encouragement, and wide-ranging support. I would like to

thank my committee members, Professors Kamal Youcef-Toumi and David R. Wallace, for their

inspiring advice, and Dr. Sheng Liu for his invaluable guidance.

Our group is always a fun and dynamic place. I will remember Booho, Brandon, Carolyn,

Danielle, Peter, Phil, Steve, Xiangdong, Yi, Yong and other members of the d'Arbeloff

Laboratory for Information Systems and Technology for their help and friendship.

My family has been a great source of love and encouragement. My having the

opportunity to write this thesis results from what I have learned from my parents. Most of all,

thanks to my wife Stephanie. I will not be able to finish my research project without Stephanie's

support.

Finally, I wish to thank my sponsors Daikin Industries, Home Automation and Healthcare

Consortium, and Matsushita Electric Industrial Company.

4

Table of Contents

I Introduction ... 9
1.1 M otivation ... 9
1.2 Thesis contribution... 10
1.3 Thesis organization ... 12

II Incom patible Boundary Condition... 15
2.1 M odeling of Subsystem s.. 15
2.2 Algebraic Constraints... 17
2.3 Differential Algebraic Equation and Index Reduction.. 19
2.4 Resolving of Algebraic Constraints ... 20
2.5 Pure Discrete-Tim e Boundary Condition Coordinator .. 23

III Discrete-Tim e Sliding M ode.. 26
3.1 Introduction to Discrete-Time Sliding M ode Control.. 26
3.2 Single-Rate DTSM ... 27

3.2.1 Dynamics of the Sliding Function... 27
3.2.2 Continuous Control Input... 28
3.2.3 The Invariant Set around the Origin... 29
3.2.4 Proof of Convergence.. 30

3.3 The M ulti-Rate DTSM .. 33
3.3.1 Two-Tim e Scale Problem ... 33
3.3.2 Im plem entation of DTSM .. 34

3.4 The Accuracy of the Original Algebraic Constraint .. 37
3.5 Exam ple... 38

3.5.1 M odel .. 38
3.5.2 Results ... 40

3.6 Extension to M ultiple Subsystem s .. 43
IV Input-Output Linearization Analysis of Co-Sim ulation.. 47

4.1 The Effect of .. 47
4.1.1 Exam ple... 47
4.1.2 A Linear Case... 51

4.2 Influence of DTSM on Stability of Subsystem s..53
4.2.1 Subsystem s in Partial Controller Canonical Form .. 54
4.2.2 General Nonlinear Subsystem s ... 58

4.3 Subsystem Relative Order and the Index of DAE...59
V Co-Sim ulation with M inimum Inform ation Disclosure .. 60

5.1 Hybrid Implementation of Boundary Condition Coordinator...................................60
5.2 Disadvantages of Hybrid Implem entation... 63
5.3 Constructing Pure Numerical DTSM Using Minimum Information 64
5.4 Decoupled M ulti-Rate DTSM ... 67

5.4.1 Integration path .. 67
5.4.2 Convergence in a Sm all Tim e Scale .. 69
5.4.3 Convergence in a Large Tim e Scale .. 71
5.4.4 Num erical Examples ... 72

5.5 Separation of BCC and Dynamic Subsystem s ... 75

5

VI Softw are D evelopm ent... 77
6.1 Softw are for D ifferent Functional Requirem ents... 77

6.1.1 Co-Sim ulation Running on One Com puter... 77
6.1.2 Co-Sim ulation Running over The Internet... 78
6.1.3 Single-Thread Sim ulation .. 79

6.2 Softw are Architecture .. 80
6.3 Object-Oriented D esign of Subsystem Sim ulators..82

6.3.1 Object-Oriented Design.. 82
6.3.2 Synchronization... 83
6.3.3 Com putational Logic.. 85
6.3.4 Class Tree..88

6.4 U ser-friendly System Integrator D esign ... 91
VII Co-Sim ulation of a H VAC System .. 94

7.1 Introduction of Building Energy System .. 94
7.2 Modeling of Multi-unit Air-Conditioning/Heat Pump System.................................. 96

7.2.1 Tw o-N ode H eat Exchangers .. 96
7.2.2 A ccum ulator ... 97
7.2.3 Com pressor.. 97
7.2.4 Expansion V alve .. 98

7.3 Co-Sim ulation Setup .. 99
7.3.1 Subsystem Sim ulator Coding .. 99
7.3.2 System integration... 101

7.4 Results ... 102
VIII Conclusions and D irections for Future W ork ... 106
References ... 108

6

List of Figures and Tables

Figure 2.1.1 Bondgraph model of a subsystem .. 16
Figure 2.2.1 Co-Simulation of dynamic subsystems with different boundary conditions........17
Figure 2.2.2 Incompatible boundary condition caused by numerical difficulty..................... 18
Figure 2.4.1 A lgebraic constraint.. 21
Figure 2.4.2 Algebraic constraint eliminated..21
Figure 2.4.3. Fictitious spring and damper.. 22
Figure 2.4.4. Modeling the solution of DAE as a control system ... 23
Figure 2.5.5. Boundary Condition Coordinator resolves incompatible boundary condition.......25
Figure 3.1.1 Pseudo sliding mode in the discrete-time domain. ... 26
Figure 3.1.2 Sliding mode in the continuous-time domain ... 27
Figure 3.2.1 Illustration of the equivalent control, minimum control magnitude and control input.

... 3 1
Figure 2.2.2 Phase portrait of the discrete-time sliding mode motion. 33
Figure 3.3.1 Possible implementations of the multi-rate algorithm... 35
Figure 3.4.1. s - g relation viewed as linear filters. ... 37
Figure 3.5.1 Coupled hydraulic and mechanical systems... 39
Figure 3.5.2 Causal conflict between two subsystems.. 39
Figure 3.5.3 Results of the inconsistent initial condition... 41
Figure 3.5.4 Results of consistent initial condition.. 42
Figure 3.6.1 A common effort junction with compatible boundary conditions....................... 44
Figure 3.6.2 A common effort junction without a subsystem dictating the effort variable.........44
Figure 3.6.3 A common effort junction with multiple subsystems providing the effort variables.

... 4 4
Figure 4.1.1. Effects of parameter/p (u = 1). .. 48
Figure 4.1.2. Effect of parameter u (u= 0.1).. 49
Figure 4.1.3 Effect of parameter u (u = 0.04)... 50
Figure 4.1.4 The block diagram of a linear system.. 51
Figure 4.1.5 Effect of p in a linear system .. 52
Figure 4.2.1 Block diagram view of realization of algebraically coupled systems. 53
Figure 4.2.2 Block diagram of Input-Output linearization control. 54
Figure 4.2.3 Example of systems in partial controller canonical form. 55
Figure 5.1.1. Hybrid implementation of the Co-Simulation. ... 61
Table 5.1.1 Computational sequence of the Co-Simulation...62
Figure 5.4.1 Different ways of enforcing the sliding function.. 66
Figure 5.4.2 Schematic of the decoupled multi-rate DTSM. ... 68
Figure 5.4.3. Boundary variable for different vo. .. 73

Figure 5.4.4. Sliding variable for different vo. .. 74
Figure 5.4.5. Sliding variable for different n-vo. 74

Figure 5.4.6. Boundary variable for different n-vo. 75
Table 5.5.1. Communication among subsystem simulators and BCC..................76
Figure 6.1.1 Structure of Co-Sim ulation... 78
Figure 6.1.2 Structure of the Internet-based Co-Simulation ... 80
Figure 6.3.1 The structure of an object. .. 83

7

Figure 6.3.2 Mulit-thread input/output of subsystems .. 85
Table 6.3.1 Subsystem characteristics..86
Figure 6.3.3 Common computational logic..86
Figure 6.3.4 Subsystem simulator logic of causal dynamic systems. 87
Figure 6.3.5 Subsystem simulator logic of BCCs..88
Figure 6.3.6 Subsystem simulator logic of pure algebraic systems. 88
Figure 6.3.7 Subsystem simulator logic of source systems. .. 88
Figure 6.4.1 System integration environment..91
Figure 3.6.8 Class tree of subsystem simulators. ... 93
Figure 7.1.1 A commercial building HVAC system (courtesy Daikin).................95
Figure 7.2.1 The two-indoor-unit air-conditioning/heat pump system 97
Figure 7.3.1 BCCs connecting the indoor units and the accumulator.. 100
Figure 7.4.1 Plot of sliding function s.. 103
Figure 7.4.2 Plot of m ass flow rate h, 103

Figure 7.4.3 Plot of Pressure P ... 104
Figure 7.4.4 Plot of Mean void fraction Y.. 104
Figure 7.4.5 Plot of tube wall temperature T .. 105
Figure 7.4.6 Plot of refrigerant temperature in superheated or sub-cooled region Ts................105

8

I Introduction

1.1 Motivation

People have developed many modeling and simulation technologies for different purposes over

the years [Sinha et al, 2001]. System modeling is an important tool used by engineers for

studying and designing engineering systems. Simulation then makes it possible for engineers to

test the engineering system in the virtual realm before building the hardware. Modeling and

simulation are closely related. The model serves as the basis for the simulation while simulation

computes the prediction of the model. Modeling and simulation reduce both the time and the

cost associated with the product development.

Object-oriented modeling approaches were first introduced in the late 1970s to deal with

complex and multi-disciplinary systems [Otter and Cellier, 1996]. Among many object-oriented

properties, modularity is the most important. Reusable subsystem models, which are developed

by various experts, can be assembled to represent different large system models. The typical

procedure of simulation is as follows: modeling of subsystems, assembling subsystem models,

compiling the overall system model and solving of compiled system model.

Use of simulators is not only a powerful engineering methodology for design and

analysis but also an important tool with which engineers communicate to each other. In addition

to traditional specifications and data sheets, engineers now communicate by exchanging

simulators representing the whole behavior of the components and systems they develop. In the

automobile industry, for example, carmakers request that suppliers provide simulators of supply

parts, and evaluate them by connecting the supply part simulators to the engine simulator and

body simulator of the automobile. In turn, carmakers provide the suppliers with simulators

depicting the conditions of the automobile system so that the supplier can develop the right parts

to meet the specifications. Today's carmakers can communicate with thousands of suppliers

through a supply chain management system over the Internet. In the air conditioner industry,

former competitors are now forming an alliance to use common components and integrate their

products. Simulators representing detailed behavior of individual units are exchanged to

streamline communications among engineers of alliance partners and complete thorough

engineering analysis and product development in a limited time.

However, current object-oriented modeling based simulation method has limitations:

9

" It requires engineers to go through all of the compilation and solution procedure before the

simulation results of the coupled system can be obtained;

" Some component makers may want to keep their intellectual property private, yet providing

models of their components exposed many details of their design;

0 Different components of a coupled system may require quite different solution methods

which may further complicate the process of converting models to simulations.

Extending the concept of modularity a step further, i.e., using objects of subsystem

simulators instead of objects of subsystem models, a new simulation environment is proposed.

Termed as Co-Simulation, it is software environment for simultaneously running a collection of

subsystem simulators. When subsystem simulators are connected, simulators will produce the

simulation result of the large system without going through the complex procedure of

compilation and of numerical solution. Subsystem component simulators coded by different

suppliers will interact with each other using predefined inputs and outputs. Simulators can then

work together if they have compatible inputs and outputs. The internal implementation of the

simulators is solely decided by their designers. The system integrator only needs to know the

interface of the subsystem simulators. Therefore, the aforementioned three drawbacks of the

object-oriented modeling can be eliminated.

The proposed object-oriented simulation technology will be an essential tool to facilitate

upstream and downstream cooperation along the supply chain. The downstream companies will

be able to test the integrated system with component simulators supplied by the upstream

companies. The component makers also will test their products to find how their components

work with other components by running simulators of all of the components together. In this

way, engineers from the entire supply chain can communicate by co-running their subsystem

simulators. Ultimately, simulators become the modern specification sheets for any component,

but with a much richer array of available information.

1.2 Thesis contribution

Unlike object-oriented modeling, which uses a declarative approach to describe the dynamic

system, a simulation must use a procedural approach to obtain the numerical results. The

procedural approach defines the relation between dependent variables and independent variables

through assignments. Assignments are basically causal definitions. The declarative approach

10

defines the relationships between variables by using equations without causal information.

Simulators are basically numerical solvers for certain models. Numerical algorithms are then

usually realized by procedural computer programs. Therefore, when simulators are assembled to

represent a large coupled system, causal conflicts may occur due to the fixed causal assignments.

Causal conflict is therefore the major challenge of the object-oriented simulation.

An incompatible boundary condition resulting from the causal conflict is modeled as an

algebraic constraint. The coupled system is considered to be a control problem and the algebraic

constraint is treated as the desired trajectory. Thus the system described by the high index

Differential Algebraic Equation (DAE) becomes a high relative-order feedback control system.

A sliding manifold is used to reduce the high relative order. Since the simulators are discrete-

time systems, a discrete-time sliding mode controller is used to enforce the sliding manifold.

The Boundary Condition Coordinator (BCC), which implements the discrete-time controller,

makes the incompatible boundary condition compatible. The major advantage of the discrete-

time controller over the continuous time controller is that it is able to guarantee numerical

stability. If a continuous-time controller were used, one would still have to solve it using a

numerical method. In that case, even if the closed-loop system is stable in the continuous-time

domain, the numerical simulation is not guaranteed to be stable.

Since algebraic constraints can have both fast and stable dynamics, it is logical to

consider running the BCC faster than the rest of the subsystem simulators. Multi-rate sliding

controllers are developed to guarantee the stability of the sliding mode with any integration step

size of the subsystem simulators. The influence of the BCCs on the rest of the subsystem

simulators is studied using the input-output linearization theory.

The discrete-time sliding mode control is a model-based control algorithm that can

guarantee stability. However, the object-oriented simulation paradigm requires the subsystem

simulators not to share their own models with other subsystem simulators. Therefore, the model-

based controller should be built such that it relies on as little information from the subsystems as

possible. The minimum information required for the discrete-time sliding mode controller is

identifiable. An optimized multi-rate sliding mode scheme is especially devised to minimize the

information disclosure from the subsystem simulators. This version of the multi-rate sliding

mode scheme also facilitates the pure numerical computation required by the simulator.

11

A software environment for Co-Simulation is developed. This software environment,

written in Java, defines the protocol for subsystem the simulators. Subsystem simulators and

BCCs run as independent processes in the Co-Simulation environment. Class templates

containing all necessary functions for the different types of subsystems are defined. Engineers

can easily build a subsystem simulator by simply providing the mathematical model, which will

be hidden after the subsystem simulator is compiled. Integration engineers can assemble

subsystem simulators into simulation of the large coupled system by simply making connections

among subsystems. The object-oriented class design makes it possible to extend Co-Simulation

over the Internet or to compile subsystems into a single threaded simulator.

1.3 Thesis organization

This thesis is organized into eight chapters. In chapter 2, the major challenge of the object-

oriented simulation-the causal conflict between subsystem simulators-is studied. The causal

conflicts are modeled as algebraic constraints. The ODEs of the subsystems and the algebraic

constraints form DAEs. Different ways of solving algebraically constrained system are

compared. A nonlinear control-inspired realization approach is adopted. The Discrete-Time

Sliding Mode (DTSM) method is proposed to build the Boundary Condition Coordinator. The

BCC is an artificial dynamic subsystem simulator, which will converge to the algebraic

constraint. By using the BCC, the causal conflict is resolved while the modularity of the

subsystem simulator is preserved.

Chapter 3 is devoted to the details of the development of the DTSM method. The DTSM

is achieved by a continuous control law, which avoids the discretization chatter problem. Under

the DTSM control law, the vicinity of the sliding manifold is shown to be an invariant set. A

Lyapunov type of proof is given to show that the invariant set is attractive, and the system

trajectory will reach the invariant set within finite steps and will stay there forever. The bound of

the minimum magnitude of the control input is given and its relation to the overall simulation

step size is shown. In order to decouple the minimum magnitude of the control input and the

step size of the subsystem simulators, the multi-rate DTSM method is developed. The multi-rate

DTSM method guarantees the convergence of the sliding mode under any chosen subsystem

simulator step size.

12

In Chapter 4, the effect of DTSM control on the subsystem simulators is investigated.

These results indicate that a parameter in the sliding manifold definition affects the numerical

stability of the subsystems, when the subsystem simulators are solved using explicit integration

algorithms. The input-output linearization theory is used to investigate the role of the BCC. The

close relationship between the index of the DAE and the relative order of the feedback control

system is studied. This chapter suggests a procedure to prevent occurrences of the instability that

may be caused by the BCC.

In Chapter 5, the implementation issues of the DTSM methods are discussed. A

straightforward hybrid symbolic and numerical implementation is shown to be ineffective and

not fully consistent with the requirements of the object-oriented simulation. The computational

sequence is optimized to improve the efficiency. A variation of the multi-rate DTSM method is

developed. The variation decouples the effect of the constrained input and the state variables on

the sliding function. This new decoupled multi-rate DTSM method only requires the following

information from the constrained subsystem simulators: the outputs, the time derivatives of up to

one less than the relative order of the outputs and the time derivative of the relative order of the

outputs as a function of the constrained input. The decoupled method is realizable using pure

numerical operations, which will not cause problems if functions without closed-form

expressions are used in the simulators.

Chapter 6 focuses on the software development for the Co-Simulation environment. The

functional requirements of the Co-Simulation software environment are identified. The

distributed architecture is chosen for the Co-Simulation environment. The Co-Simulation

software environment is developed in such a way that it will be easy to extend to the Internet-

based simulation while it is also given backward compatibility to object-oriented modeling. The

subsystem simulator classes are coded in an object-oriented way. The class templates for

different type of subsystems are provided for future use. A subsystem engineer can easily build

a subsystem simulator by merely providing the mathematical model of that subsystem.

In Chapter 7, a real world problem consisting of a multiunit air-conditioning/heat pump

system is simulated using the Co-Simulation software environment. The system consists of

seven physical subsystem simulators and two Boundary Condition Coordinators. This coupled

simulation is entirely based upon the software developed in Chapter 6.

13

Finally, remarks on the future research directions of the object-oriented simulation are

given in Chapter 8.

14

II Incompatible Boundary Condition

2.1 Modeling of Subsystems

Modeling is the basis of simulation. Numerical simulation is simply a piece of software that

solves a mathematical model. Therefore, we must discuss the modeling of large and complex

systems before we can simulate them. Because of the importance of modeling, people have

developed numerous modeling schemes, languages and software [Sinha et al, 2001]. Using

different criteria, these modeling approaches can be divided into many categories. One of these

criteria is whether the modeling approach is procedural or declarative. Many physical laws are

declarative, meaning they only define the relationship among certain physical quantities. For

example, Newton's second law

F =m-a (2.1.1)

does not tell us if the force causes the acceleration or if the change of momentum causes the

force. The sign "=" is the equal sign, which only means that the two sides total the same

quantity. If a modeling method exhibits such a property, the modeling method is declarative.

The counterpart of the declarative modeling approach is the procedural modeling approach. In a

procedural model, all relations are defined using assignments. In this case, the appropriate sign

is ": =". A modeler has to choose if the force causes the acceleration

1
a := -F (2.1.2)

m

or if the change of momentum causes the force

d
F := -(mv). (2.1.3)

dt

Both declarative and procedural modeling languages have been developed. Declarative

modeling methods are more flexible than procedural methods. It is easier to assemble

subsystems modeled using a declarative approach into a large system model. However,

numerical solvers are all procedural. The declarative models require post-processing before they

can be numerically simulated. Post-processing of the assembled declarative models replaces

15

equal signs with assignment signs. The post-processing generates a numerical procedure relying

on numerical integration. Numerical differentiation causes drift problem and is therefore

avoided. Since we intend to build object-oriented and component-based simulations, which are

not compatible with the post-processing of coupled models, we start our modeling effort using

the procedural approach.

A bondgraph is a graphic procedural modeling tool [Karnopp et al, 1990; Hogan, 1987].

It is widely used in the modeling of multi-physics systems in which the subsystem components

belong to different energy domains, e.g. mechanical, fluid, thermal, or electrical. Since the Co-

Simulation software environment will be applied to coupled systems of different physical

domains, we adopt some concepts of bondgraph theory, such as energetic bonds and junctions.

An energetic bond is used to describe the coupling between two systems. Energy is the common

physical property among all physical domains. Therefore, subsystems of different energy

domain communicate with each other through energy transmission. Energetic coupling between

physical systems implies that the coupling is bilateral [Karnopp et al, 1990]. The coupled

subsystems influence each other, so that all connected subsystems transmit both the input and the

output information through one bond.

y Model

Figure 2.1.1 Bondgraph model of a subsystem

Figure 2.1.1 shows a subsystem model with one free bond, which is ready to be

connected with other subsystems. For simplicity only one energetic coupling is considered here.

The model of subsystem simulators in the differential equation form is

xk = f,(xi, ug, t) (2.1.4)

yi = yi(xi), (2.1.5)

where u and y are the input and the output variables of one bilateral energy coupling; subscript i

denotes the ith simulator of the Co-Simulation system.

16

incompatible
boundary

dr e condition

Subsystem -41 11 <Subsystem
simulator B simulator A

compatible
boundary
condition Subsystem

simulator C

Figure 2.2.1 Co-Simulation of dynamic subsystems with different boundary conditions.

2.2 Algebraic Constraints

Power, the time rate of energy transfer, is the scalar product of the conjugate power variable-

the flow variable f and the effort variable e. The physical boundary between two subsystems is

modeled as a junction. By applying the first law of thermodynamics at the junction between two

coupled subsystems, power flow into and out of the boundary should be equal since the boundary

does not generate, store or dissipate energy. Using the conjugate power variable, the power

balance for the junction is:

ein fin = eot foul. (2.2.1)

We can also apply any one of the physical laws, such as Newton's third law, conservation

of mass, conservation of momentum, conservation of electrical charge, etc., to the junction.

Then boundary equation (2.2.1) can be written as

e(fin - fol) =0 (2.2.2)

or

(egn - eot,) f =0 . (2.2.3)

Suppose that we have two subsystems coupled in the common effort case of Eq. (2.2.2).

If the boundary condition is compatible, i.e. u1, y1, U2, Y2 being e, fou, fin, and e, respectively, the

two systems can be written in the ODE form:

17

S= f(x, t), (2.2.4)

where x is the combination of x, and x2. The input is represented by the output of the other

system and is not explicitly shown in Eq. (2.2.4). This type of coupling is shown in Fig. 2.2.1

between subsystem B and C.

However, if the boundary condition is incompatible, i.e. uj, yl, U2, Y2 being e, f,, e, and,

f1', respectively, the two systems cannot be written in a simple ODE form. Instead, we have to

use an extra algebraic equation (2.2.6) to describe the coupled systems:

i =f(x, z,t) (2.2.5)

0= y1(x,u,t)-y 2 (x,u,t)= g(x,z,t), (2.2.6)

where z, called a constrained input, is the input u1 and u2 of the coupled subsystems. g is the

algebraic constraint that must be used to decide the constrained input z. This type of coupling is

shown in Fig. 2.2.1 between subsystem the simulators A and B.

-~ - ~ -I - - - -
Gas Line

Evaporator Accumulator

pressure output I pressure input I pressure output

flow input flow output I flow input

Figure 2.2.2 Incompatible boundary condition caused by numerical difficulty.

In some cases, the original models are compatible at the interface, such as shown in

Fig. 2.2.2. However, when the connecting pipe is short and wide or the mass flow rate is low,

the static equation that calculates the flow based on pressure difference becomes nearly singular.

The proximity to the singularity makes the pipe equation very sensitive to pressure difference

and can therefore be quite error prone. In practice, the pressure drop between the heat exchanger

and the condenser is ignored to preclude these potential errors. Without the pipe, though, the

two thermal equipment models have to interact across an incompatible boundary condition.

18

Incompatible boundary conditions are the most significant source of algebraic constraints

in the modeling of dynamic systems [Campbell, 1995]. Algebraic equations can also be the

result of model reduction or constrained dynamics, etc. We focus on the algebraic constraints

caused by the incompatible boundary condition in this research. The challenge is to develop a

method that can numerically solve differential equations coupled with algebraic constraints

without compromising the object-oriented properties of the subsystem simulators.

2.3 Differential Algebraic Equation and Index Reduction

A differential system constrained by an algebraic equation, such as

i = f(x, z,t) (2.2.5)

0 = g(x,z,t), (2.3.1)

is called a Differential Algebraic Equation (DAE). Assuming that the constraint equation (2.3.1)

is sufficiently differentiable and that a well-defined solution for x and z exists with consistent

initial conditions, i.e. initial condition satisfies the algebraic constraint equation, an important

structural property of a DAE known as the index can be defined [Brenan et al, 1989]. The

minimum number of times that all or part of the constraint equation (2.3.1) must be differentiated

with respect to time in order to solve for as a continuous function of t, x, and z is the index of

the DAE Eqs. (2.2.5) and (2.3.1).

Assuming that the DAE has an index r, by definition of the DAE index, the following set

of algebraic equations must be satisfied by any exact solution of the DAE:

0 = g(x, z, t) (2.3.1)

dg0 = - (2.3.2)
dt

dr-i
0= ,r_ g. (2.3.3)

A new constraint equation can be defined as a weighted summation of Eq. (2.3.1) through (2.3.3).

This new constraint equation requires only one differentiation to solve for . If we use this new

constraint equation to replace the original constraint Eq. (2.3.1), the resulting DAE is index one

19

and it is thus easier to solve. We define the following equation as the previously mentioned

weighted summation:

d ,r-1
s(x,t)= P -+1 g=0, (2.3.4)

dt

where p > 0. This is also known the Baugerte's stabilization [Baugarte, 1972]. This equation

can be viewed as a sliding manifold as well. The sliding manifold definition places the poles of

the constraint dynamics at -p-1 [Gordon and Liu, 1998]. Now the DAE system (2.2.5) and

(2.3.4) is index 1 and is much easier to solve.

Equation (2.3.4) represents a critically damped dynamic system. There are (r-1)

decoupled linear modes in this dynamic system. The time constant of each mode is the same and

is equal to u. If the sliding manifold equation is satisfied, all modes of the sliding manifold

subspace decay to zero asymptotically with time constant U. The derivatives of the original

algebraic constraint, and the weighted summation of the constraint and the derivatives will

remain zero all the time if the original algebraic constraint Eq. (2.3.1) is satisfied at the

beginning of the simulation. Thus the original high index algebraic constraint can be replaced by

the reduced index algebraic constraint Eq. (2.3.4).

2.4 Resolving of Algebraic Constraints

In the past 30 years, many DAE solution algorithms and packages have been developed [Brenan

et al, 1989; Mattsson and Soderlind, 1993; Petzold, 1983]. If we use the existing DAE solution

packages, we have to collect all dynamic and algebraic equations from all of the subsystems and

feed them into the DAE solution package. This approach can solve object-oriented modeled

large systems, but it should not be used in the Co-Simulation environment since every subsystem

simulator of the Co-Simulation is an object-oriented component. If we dismantle the subsystem

simulators and extract models out, we destroy the basic building blocks of Co-Simulation and the

object-oriented simulation paradigm is destroyed.

Another way of dealing with the DAE system is to convert the DAE system into an ODE

system. This procedure, known as DAE realization in the control community, may increase or

decrease the dimension of the system. Figure 2.4.1 shows one example of two subsystems

coupled through incompatible boundary conditions. Because of the boundary conditions, the

20

overall system equations contain algebraic constraints. Subsystem A takes an effort input and

produces a flow output. If we can change the causal assignment of the R element of subsystem

A, subsystem A can take a flow input and produce an effort output. Therefore, by manipulating

the subsystem model, the algebraic constraint can be eliminated as shown in Fig. 2.4.2.

S R: Rf R: RS

Ppf:Se-l[-Se TF Se Se I---C:CS
V 1/A coupling X

Subsystem B /A - x=O Subsystem A

Figure 2.4.1 Algebraic constraint.

If R: RjR : R -4I:\ R:R1 R

Ppump:Se -- TF Se Sf--- 1-C: C,

Subsystem B Subsystem A

Figure 2.4.2 Algebraic constraint eliminated.

However, manipulating subsystem equations is against the functional requirements of the

Co-Simulation since subsystems will be provided in the form of coded simulators. Also this

method does not always work in practice. If R,-I is not given in a closed form expression, this

method fails.

Figure 2.4.3 shows that two robots keep their endpoints in contact with each other. If we

treat each robot as a subsystem simulator, we can simultaneously run two simulators of the

robots to simulate the system. However, the boundary condition, which is the point of

connection for the two endpoints, forms an algebraic constraint. We can add a fictitious spring

and damper between the two endpoints empirically. This addition makes the original

incompatible boundary condition compatible and thus removes the algebraic equation. Known

as the stiff element method, this method does not change the subsystem simulators and the

modularity is intact [Zeid and Overholt, 1995]. However, this approach requires an ad hoc

procedure for tuning parameters. In practice, we can only adopt linear components for the

fictitious spring and damper. The linear components substantially reduce the performance that

the fictitious spring and damper may provide. Slightly damped linear stiff elements introduce

21

highly oscillatory modes while heavily damped linear elements converge to the algebraic

constraint slowly.

Subsystem A Subsystem B

Figure 2.4.3. Fictitious spring and damper

A substantial improvement for the original ad hoc stiff element method is the Singularly

Perturbed Sliding Manifold (SPSM) method [Gordon and Liu, 1998]. It is devised based on the

nonlinear control theory. The algebraic constraint is treated as the desired trajectory and a model

based feedback controller is designed to push the system onto the desired trajectory. Starting

from the index-reduced DAE Eqs. (2.2.5) and (2.3.4), a boundary-layer-smoothed switching

control law is used to enforce the sliding manifold Eq. (2.3.4)

s = -Ksat , (2.3.5)

where 1 >> e > 0 and K is a positive constant [Slotine and Li, 1991]. Since both s and i are

known, we can solve for i using Eq. (2.3.5):

(asl ~ (s~ as(- s aJs
= (-K - I sat -- I -+--fi. (2.3.6)

az) (e) az at ax

The ODEs in equations (2.2.5) and (2.3.6) are based on the realization of the DAE Eqs. (2.2.5)

and (2.3.1). Figure 2.4.4 shows the block diagram of the SPSM realized DAE system [Gordon,

B. W., 1999]. DAE realization using SPSM keeps the modularity of the subsystem simulators.

The dynamic equation (2.3.6) can be viewed as the generalized fictitious spring and damper,

which supplies the compatible boundary condition for the subsystem simulators.

22

000 GC f f(t,x,z) g(tx~Z)--

controller

Figure 2.4.4. Modeling the solution of DAE as a control system.

However, by replacing Eq. (2.2.5) with Eq. (2.3.6), we are using a stiff ODE system to

approximate the original DAE system. The resulting stiff ODE system may be even harder to

solve than the original DAE (2.2.5) and (2.3.1) [Brenan et al, 1989]. We not only have to

stabilize the sliding mode by choosing appropriate parameters of e and K, but we must also

guarantee the numerical stability of the resulting stiff ODE. The SPSM based control law is

highly nonlinear and the subsystems are often nonlinear as well. Guaranteeing unconditional

numerical stability for arbitrary nonlinear dynamic simulation is very difficult.

2.5 Pure Discrete-Time Boundary Condition Coordinator

The Singularly Perturbed Sliding Manifold method is a control-inspired realization method,

which can provide the correct boundary condition stably. However, the SPSM method is a

continuous-time approach. If we were to use the SPSM method in the Co-Simulation, we would

have to check the numerical stability along with the stability conditions of the sliding mode since

the Co-Simulation is a numerical simulation. Although subsystems of a coupled system are

continuous systems, the subsystem simulators are all discrete-time systems. If the algebraic

constraints are converted into stable discrete-time dynamic systems that provide the same

boundary condition, we do not have to check the numerical stability.

Before we move on to the discussion of discrete-time systems, we first define a notation

that will be required for our discrete-time analysis. All variables evaluated at time kAt are

written with a subscript k. For example, the state variable x(kAt) is written as Xk and the

constrained input z(kAt + At) is written as Zk1. All functions evaluated at (Xk, tk, zk) are written

with subscript k. For example, the sliding mode S(Xk, tk, zk) is written simply as Sk.
thIn section 2.1, the model of the i' dynamic subsystem is written as

23

ii=f Xi, ui,t)
(2.5.1)

=i y(xi)

The simulator form of the dynamic subsystem is the discretized version of the above model

Xik+1 = Xi,k + At*i (2.5.2)

Yi,k+1 = Y(Xi,k+1)

where Xik is the effective derivative, which is different for different numerical integration

methods. For the sake of simplicity, we use Euler's forward integration formula. The effective

derivative in this case is simply

Xi,k i,k fi (Xi,k, zk, tk) (2.5.3)

Considering the case when two subsystems are in causal conflict configuration; the

overall model of the coupled system is then

Xk+1 - Xk + At f(xk ,zk ,t) (2.5.4)

0 = g(Xk+l) (2.5.5)

where z replaces u to emphasize the algebraic constraint. Using Eq. (2.3.4), we define a sliding

manifold to replace the original algebraic constraint Eq. (2.5.5). So, the algebraically coupled

dynamic system with the reduced index in the numerical simulation form is

Xk+1 -Xk +At-f(Xk,zktk) (2.5.4)

s(Xk+1,zk+1,tk+1)= 0. (2.5.6)

For this discrete-time system, the dynamic system is only meaningful at the sampling point tk and

the constraint equation needs to be satisfied only at the sampling point as well.

We want to design a special discrete-time dynamic subsystem, which enforces the

constraint equation (2.5.6) by providing the constrained input. This special subsystem simulator

converts the incompatible boundary condition into a compatible boundary condition. Called a

Boundary Condition Coordinator (BCC), the special subsystem simulator is a linear dynamic

system

24

-1

Zk+1 - Zk + Vk, (2.5.7)

where Zk is the state variable of the BCC and vk is the control input, which we will design based

upon the output variable Yk's from the two subsystem simulators that are connected through the

algebraic constraint. Applying the BCC to the system with the incompatible boundary condition

in Fig. 2.2.1, we have resolved the incompatible boundary condition as shown in Fig. 2.5.5.

Boundary
Condition

Coordinator

Subsystem Subsystem
simulator B simulator A

compatible
boundary
condition Subsystem

simulator C

Figure 2.5.5. Boundary Condition Coordinator resolves incompatible boundary condition.

25

Ill Discrete-Time Sliding Mode

3.1 Introduction to Discrete-Time Sliding Mode Control

An intuitive approach to Discrete-Time Sliding Mode (DTSM) control is to derive control laws

in the continuous-time domain and implement them directly in the discrete-time domain.

However, this straightforward method leads to discretization chatter as shown in

Fig. 3.1.1 [Yu, 1994]. The discretization, i.e. finite-frequency sampling, causes the discretization

chatter. This type of chatter is not the result of the unmodeled dynamics. Figure 3.1.2 shows the

sliding mode driven by an ideal infinite fast controller and shows no chattering problem.

Because the straightforward approach to the discrete-time sliding manifold always causes the

chattering phenomenon and the trajectory does not stay on the sliding manifold, this type of the

discrete-time sliding mode is also called pseudo or quasi sliding mode [Delonga, 1989].

z A

pseudo sliding
mj e

X

Figure 3.1.1 Pseudo sliding mode in the discrete-time domain.

For a continuous-time system, discontinuous control is required to make the dynamic

system exhibit the sliding mode. However, discontinuous control is not required for a discrete-

time dynamic system to exhibit the sliding mode motion [Drakunov and Utkin, 1992]. The

definition of the discrete-time sliding mode is given by [Utkin et al, 1999]. In the discrete-time

dynamic system,

Xk+1 =f(Xk,uk), (3.1.1)

26

where x E R", u e Rm, f: RnxRm -> R". The discrete sliding mode takes place on a subset I of

the manifold a= {x: s(x) = 01, s E Rm, if there exists an open neighborhood E of this subset such

that for each x e E, it follows that s(xk+J) e 1.

sliding mode

x

Figure 3.1.2 Sliding mode in the continuous-time domain.

3.2 Single-Rate DTSM

3.2.1 Dynamics of the Sliding Function

The design of the Boundary Condition Coordinator is viewed as a control problem. The dynamic

system in discrete-time is

Xk+1 X Xk + At f(xk, zk, tk) ((3.2.1)

(3.2-2)

and the system trajectory should stay at, or close to, an equilibrium point:

S(Xk+1, Zk+1, tk+1) =0. (3.2.3)

The relative order of this stabilization problem is zero.

Assuming the continuous function s is sufficiently differentiable around the point s = 0,

sk+I can be obtained as follows:

Zk+ =Zk +Vk ,

Sk+ = k +as (Xk tk, Zk> (Xk+1asx - Xk)+ as (Xi, tk, Zk) -At
at

as
+ (xkk,tk IZk (Zk+1az

(3.2.4)

27

-k)+ Rk .

where R is the second order remnant term. If we let w = [x , t, z]T, then Rk is as follows:

Sa (as TRk -Aw [Awk, (3.2.5)aw aw
-k +OAWk

where 0 0 ! 1, according to the Mean Value Theorem. Substituting in the dynamic equation

(3.2.1) and (3.2.2), Equation (3.2.4) can be represented by using variables of step k, and we have

sk+1 sk + JXkAt-(xkZ,t)JtkAt+JZV+ R. (3.2.6)

We define

as
JZk = -- (xk, zk , t), (3.2.7)az

and

a - Jxkf(Xk,Zk,tk)At+ Jtk At (3.2.8)

for the sake of notation clarity. The sliding function s at the step k+1 is

sk+1 = sk + ak + JZkVk + Rk. (3.2.9)

By the definition of the DAE index, JZk is nonzero.

3.2.2 Continuous Control Input

From Eq. (3.2.9), we find that the discrete-time dynamic system s at the step k+1 is decided by

four terms. Term Sk is the starting point for the next step. Terms ak and Rk are external

influences applied to the dynamic system Eq. (3.2.9). Term JZkVk is where active control can be

applied to influence Sk+.. In order to push Sk+J towards the equilibrium point, we have to ensure

that the control influences the system more than other sources. Therefore, it intuitively requires

a minimum magnitude for the control input such that the control input is always strong enough to

compensate for the external influences and to push the system trajectory towards the right

direction. vo is denoted as the magnitude of the minimum control input. A domain

DcQ={x,t,z~xe R",te R+,zE R} can be defined, and D is the vicinity of the sliding

28

manifold and the index is fixed. |JzL1, Ia(At)| and JR(At, vo) are assumed to be upper bounded by

positive numbers. Then, the minimum control magnitude requirement is

vO > sup(Jz 1) -sup(la(At)| + R(At,vo) + 6),
D D

(3.2.10)

where the constant dis a small finite positive constant.

Since the term Rk cannot be exactly evaluated, we let the equivalent control Ok be our

estimate of Vk that makes the next step of the sliding function, Sk+J, zero, giving

Ok =-J- (Sk +ak). (3.2.11)

We choose a control law

Vk = v 0 sat(.
VO

(3.2.12)

The saturation function satO is used to limit the magnitude of the control input in order to

guarantee the stability..

3.2.3 The Invariant Set around the Origin

We want to show that the closed-loop system with the control law of Eq. (3.2.12) possesses an

invariant set

s supIR
D

(3.2.13)

around the origin s = 0. When the system trajectory starts in the region that satisfies Eq. (3.2.13),

we have

-Jzk '(sk + a < sup Jzi' -sup(RkI+ Iak1).
D D

The left hand side is actually the magnitude of the equivalent control Ok, so we have

Ok <maxJzk -max|RkI+-Iak1).

Adding one more term to right hand side and applying the inequality (3.2.10), we obtain

29

(3.2.14)

(3.2.15)

Ok< maxJz' -maxRkI + -akI +)< vo.

This shows that the control law becomes

Vk VO sat =O
(VO)

under the condition Eq. (3.2.13). Substituting the control input (3.2.17) into the discrete-time

dynamic system (3.2.9), we have

Sk+1 - Sk +ak + JZk(- Jzk (Sk +ak))+ R =Rk. (2

This shows that Eq. (3.2.13) is an invariant set.

attractive.

3.2.4 Proof of Convergence

Next we will show that the invariant set is

To prove that the invariant set around the origin is attractive, we choose a Lyapunov function

candidate

V(tk,s)=V =|s| (3.2.19)

It is easy to find positive constants a and b > 0 such that

alsk| 1 Vk : bsk|. (3.2.20)

This shows that the function V is positive define and decrescent.

We define the forward difference function AV as follows:

AVk =Vk+1 -Vk =|sk+1|-ISk|. (3.2.21)

If the trajectory starts not far from the invariant set of Eq. (3.2.13)

sup Jz-- supRl) < ISk I< sup Jz- 1 -sup(jRJ+ Ja),
D D D D

(3.2.22)

it is easy to see that the sliding function s will reach the invariant set in one step of time. Now,

let us start from

30

(3.2.16)

(3.2.17)

(3.2.18)

sliding mode

-4--z

I- -*

+- Vk

Figure 3.2.1 Illustration of the equivalent control, minimum control magnitude and control input.

s > sup Jz- -sup(Rj + a),
D D

which is equivalent to

jOkj> V0 .

Substituting Eq. (3.2.12) into Eq. (3.2.9) and applying Eq. (3.2.11), we have

sk+1 = sk +ak + JZkVO 1 + Rk

(3.2.25)=Sk +ak + JZkVO -J (sk +ca) +Rk
O1k

O=(Sk+clk)l 1(- -I1-+Rk

We substitute Eq. (3.2.25) into the forward difference of the Lyapunov function candidate and

we have

AVk =|sk+1|-sk|= (Sk + ak) r1 VO + Rk -iskI -
10k|I

(3.2.26)

Applying inequality (3.2.24), the forward difference function AVk can be written as:

31

(3.2.23)

(3.2.24)

s S

V 0

AVk sk+a k|r1 Vo +|Rk|-|sk

=jSk+ackI- k+|ak +R -|s
Jzk' Sk + ak)

.+kR k(3.2.27)
= sk +ak|- Vo +|JRk |-|Jsk|

J~k& ~ 1z ak+ 1--v

Inequality (3.2.10) implies

Jatk+JRk - V0 <-. (3.2.28)

Combining Eq. (3.2.28) and Eq. (3.2.27), we finally arrive at:

AVk < -S <0. (3.2.29)

This result guarantees that the system trajectory moves towards the invariant set (3.2.13) at a

finite rate and that the invariant set is asymptotically stable.

According to the theorem of the discrete-time sliding mode, the closed-loop system

exhibits a discrete-time sliding mode after s reaches the invariant set of Eq. (3.2.13). Once the

sliding mode is established, the system trajectory will stay within the invariant set forever. The

invariant set is also called the boundary layer of the sliding manifold of Eq. (3.2.3). Figure 3.2.2

shows the motion of the discrete-time sliding mode.

The meaning of the bound equation (3.2.10) can be explained by Eq. (3.2.9). The

magnitude of the control input vo must be large enough to compensate for ak and Rk to guarantee

Is+11 decreasing. Since ak is a function of tk, Xk, Zk, and At, we can simply pick a vo to

compensate for ak. The nonlinear term Rk, however, is more difficult since Rk is a function of tk,

Xk, Zk, At, and vo. Although Rk is the second order small quantity with respect to At and vo, Rk can

still be large if s is highly nonlinear with respect to At or vo. When Rk is large, we need a large vo

on the left hand side of Eq. (3.2.10) to compensate for the Rk effect. A large vo will in turn cause

a larger Rk. This may make finding a vo satisfies Eq. (3.2.10) impossible.

32

However, we can always find a vo that satisfies the inequality (3.2.10) by reducing the

step size At. When At is small, Eq. (3.2.10) can be written as follows:

vo > + , (3.2.30)

where e and y are small positive numbers. This shows that we can always find vo that satisfies

condition (3.2.10) and therefore the discrete-time sliding controller is able to stably enforce the

algebraic constraint Eq. (3.2.3).

possible
trajectory

x

Figure 2.2.2 Phase portrait of the discrete-time sliding mode motion.

3.3 The Multi-Rate DTSM

3.3.1 Two-Time Scale Problem

The cost of using a small At to satisfy the convergence condition in Eq. (3.2.10) is high,
especially when the dimension of x is large. We have to decrease the step size for the entire

coupled system just to guarantee the stability of the sliding controller designed for the

incompatible boundary condition. Although, the smaller step size will make the accuracy of the

entire system better, the extra accuracy gained in x by the smaller integration steps may not be

necessary. Thus it is of great interest to decouple the overall step size of the Co-Simulation from

the stability requirement of the sliding mode controller.

In physical system modeling, very fast dynamics are sometimes modeled as algebraic

constraints since the time constants of the fast dynamics are much faster than the dynamics of the

rest of the system. If we are not interested in the dynamic properties of the fast dynamics that

settle in a very short period of time but rather in the slower dynamics, we can treat the fast

dynamics as algebraic constraints [Kokotovic et al, 1986]. This is the basis of the singular

33

perturbation theory. For such cases, using the fast dynamics Eq. (3.2.2) to replace the algebraic

constraint Eq. (3.2.3) makes physical sense. Some algebraic constraints are not the result of

ignoring fast dynamics. They are the result of redundant state variables. Although replacing this

type of algebraic constraint is not based on physical reasoning, the sliding control method that

we have just shown shows that the error generated by the substitution can be controlled and

small. In either case, the algebraic constraint can be viewed as a dynamic system that settles to a

constant in a short time period, which is much smaller than the smallest time constant of the rest

of the dynamic system. This suggests that we can simulate the algebraic-constraints-converted

fast dynamics using a time step smaller than the integration step size of the subsystem simulators.

This leads to multi-rate simulation.

3.3.2 Implementation of DTSM

To implement the multi-rate simulation, we divide one step of the subsystem simulators into n

small steps. Now the integration of the subsystem simulators is in the time scale k, while the

algebraic constraint is simulated in the time scale i which is n times faster than the time scale k.

Any variable evaluated at At(k + i/n) instant is denoted using subscript k + i/n . When we

calculate variables, such as s i and Jz i , the value of the state variable x i is required.
k+- k+- k+-

n n n

The true value of x cannot be obtained for every i from the subsystem simulators since the
k+-

n

state variables updates only at At -k instant. Instead, we use the values of Xk and Xk+1 to

interpolate the value of x i . In order to avoid clumsy notation, the variable name of x ; is
k+- k+-

n n

used for these interpolated values.

Figure 3.3.1 compares the new multi-rate method with the original single-rate method.

For Zk+J integration, we spend n small steps from Zk instead of just one step from Zk. By the

configuration of this type of multi-rate scheme, we know that the sliding function s evaluated in

the fast time scale can be used in the slow time scale. If we pick every s out of all s
k+- k+-

n n

when i is zero, we obtain the s series in the large time scale. This shows that if the sliding

controller in the fast time scale is stable, then the sliding controller in the slow time scale is also

stable.

34

(xk+1' tk+1' Zk+1

Zk+1 - -

n

k /
n/

Z I
n

X, t

Xk' Ak' Zk Xk+1'tk+1Xk+i/n,tk+i/n

Figure 3.3.1 Possible implementations of the multi-rate algorithm.

Similar to the previous proof, we can define a Lyapunov function candidate

V i = s i , (3.3.1)
k+- k+-

n n

and this function also has the property of Eq. (3.2.5). The forward difference of the Lyapunov

function candidate is

AV i = s i+1 - s . (3.3.2)
k+- k+-- k+-

n n n

s i+1 is obtained by the local linearization and the interpolation of x, as follows
k +-

n

as Axk as At as
s i+1=s i+ +-- .- +-- Azi
k+- k+- X k+1 at k+ aZk+- k+-

n n n n n n
n n n(3.3.3)

+R i tk+-At,xk+---Ax,z i,---, Az i
k+ n n k+- n k+-

n yn n

35

Similar to Eq. (3.2.9), the sliding mode at k + i+! step is
n

s i+ 1 =s ; +a i+Jz ; -v +R . (3.3.4)
k+ k+ k+- k+- k+- k+-

n n n n n n

The equivalent control is

0 =-JzI S +a (3.3.5)
k+ k+- k+- k+-

n n n ny

and the control law is

k+-
v k+ = vo sat "O . (3.3.6)

n

We can also show that

s| sup(R|). (3.3.7)
D

is an invariant set if the system is under feedback control law (3.3.6). We need to find what

condition vo has to satisfy in this multi-rate scheme. Starting from the initial condition

0 i > vO, (3.3.8)
k+-

n

and using the procedure similar to Eqs. (3.2.25) to (3.2.27), it requires that

a 0 +R vo < (3.3.9)k+- k +-_
n n Jzi

k +-
n

is always satisfied in order to guarantee the convergent condition

36

AV i = s i+1 - s i < -65. (3.3.10)
k- k+- k+-

n n n

Therefore, the minimum control magnitude must satisfy

At At
vo > sp Jz).sup aL-) + R -,vo) +g) (3.3.11)

D D nn

Comparing equation (3.3.11) with Eq. (3.2.10) shows that increasing n plays the same

role as decreasing At in ensuring the existence of vo. Therefore, updating the discrete-time

sliding control at a faster rate than the subsystem simulators can guarantee that the system

trajectory converges to the sliding manifold Eq. (3.2.3). The multi-rate approach just runs the

Boundary Condition Coordinator faster without changing the step size of other subsystem

simulators. This is a major advantage over the single-rate approach.

One should note that convergence is achieved under the assumption that all the

subsystem simulators are stable. The effect of the sliding controllers on the subsystem

simulators will be discussed in Chapter 4.

P

r - 1 blocks

Figure 3.4.1. s - g relation viewed as linear filters.

3.4 The Accuracy of the Original Algebraic Constraint

Since the sliding function is defined as

dtS Ud ~f+i1) g, (3.4.1)

where r is the index of the coupled system, the algebraic constraint g can be viewed as a filtered

version of the sliding function s. Figure 3.4.1 shows that the sliding function s passes (r - 1)

37

filter blocks of and becomes the original high index algebraic constraint g. Note that s in
s +1

the linear filter blocks denotes the Laplace operator.

Let the output of the first filter be p, and we have

I -T

p(t)= t e s(r)dr . (3.4.2)

Once the system trajectory reaches the boundary layer of the sliding manifold, it exhibits the

sliding mode and stays within the boundary layer forever. So the sliding function satisfies

s sup(Rl), (3.4.3)
D

where R can be defined for the single-rate or the multi-rate DTSM method. Then the magnitude

of the algebraic constraint is

t-T t
Is(r) | d r) i (1 (I 34

lp(t): e dp e j sup(RI). (3.4.4)

After (r - 1) filter blocks, we have the accuracy of the algebraic constraint as follows:

g5 sup(Rl). (3.4.5)

3.5 Example

3.5.1 Model

An example of Co-Simulation is given for the system shown in Fig. 3.5.1. The system consists

of two subsystems: a hydraulic subsystem and a mechanical subsystem. The oil pump creates

high pressure that drives oil to flow through a long and narrow pipe. The oil-activated piston is

connected to a fixed elastic object. Bondgraph models of the two subsystems are shown in Fig.

3.5.2. Since the two subsystem simulators are coded independently and both simulators take an

effort as input, there is a causal conflict, i.e. algebraic constraint, at the interface. It is possible to

map the flow inertance onto the mechanical domain, and combine the two inertances to eliminate

38

the causal conflict. However, this approach destroys the modularity of one of the two subsystem

simulators.

Figure 3.5.1 Coupled hydraulic and mechanical systems.

If: :Rf P. I: mR: R.

Pump:Se -1I------TF Se Se l--C: C(x)

V 1/A coupling X

Hydraulic subsystem V/A - x=Q Mechanical subsystem

Figure 3.5.2 Causal conflict between two subsystems.

The state space model for the hydraulic subsystem is

V= Q
R p p. (3.5.1)

I I I

and the state space model for the mechanical subsystem is

x=v

k A , (3.5.2)
m m

where V, Q, x, v, Ppu,,p, Pp, R, I, m, k and A are the cylinder volume, flow rate, piston

displacement, velocity, pump pressure, interface pressure, flow resistance, flow inertance, piston

39

mass, nonlinear spring constant, and piston cross-section area, respectively. The generalized

displacement variables satisfy the continuity equation at the interface:

VS--x = 0. (3.5.3)
A

We put Eqs. (3.5.1), (3.5.2) and (3.5.3) together to obtain an index 3 DAE. We define x = [V Q x
v]T and z = Ppi, and the multi-rate DTSM control law Eq. (3.3.5) is used to construct the

Boundary Condition Coordinator.

3.5.2 Results

The subsystems are integrated by using the simple forward Euler's method. The step size for the

subsystem simulator is 0.1. The parameter p is 0.1. The minimum magnitude of the control

input vo is 1000. Figure 3.5.3 shows the simulation results of an inconsistent initial condition

case. The initial values of all state variables and constrained input are zero, except that V starts

from 0.0001. The Boundary Condition Coordinator is running at the same rate as the subsystem

simulators, i.e., n = 1. The results show that the BCC is able to provide the boundary condition

that makes the two subsystem simulators converge to the algebraic constraint. Larger n makes

the sliding mode converge to the sliding manifold faster as expected. The oscillation of s is

hardly noticeable at n = 5.

Figure 3.5.4 shows the results of another set of simulations. In this case, the initial

condition is consistent, but the pump generates a sinusoidal pressure fluctuation throughout the

simulation. Other conditions of the simulation remain unchanged except that we have to use a

large n to stabilize the sliding function s. The simulation explodes when n is smaller than 16.

Plot D shows that the accuracy of algebraic constraint increases with increasing n.

40

1

>)
0z

U)

0-

0.5

0

-0.5 [

) 0.5 1 1.5
time (s)

0 0.5 1 1.5 2
time (s)

-1
) 0.5 1 1.5

time (s)

c

cJ

6
0)

0)

1 1.5 2
time (s)

0.04

0.02

-0

-0.02

-0.04

-0.06

Figure 3.5.3 Results of the inconsistent initial condition.

41

0.06

0.04
x

<
>0.02

.I,

d-

2

0.04

0.02

0

-0.02
0 0.5

-0- g'-
-A- 2,,

g

- V/A

0O

C,

0

60

40

20

0

-20
0 0.5 1 1.5 2

-4 time (s)
x10

0.5

3

2

0)

0

CL

)

1

-1
1 1.5 2

time (s)

0 0.5 1 1.5 2

-4 time (s)
x10

0 0.5 1 1.5
time (s)

)

2

Figure 3.5.4 Results of consistent initial condition.

42

0.6

0.4

0.2
E

0

-0.21

-0.4

3

2

CI)
0

CD- 1

1
0

-e- n=2 0
-- n=30

-e- n=20
,-n=30

04 N4

3.6 Extension to Multiple Subsystems

So far, the Co-Simulation of two subsystems coupled by a single algebraic constraint is studied.

This section shows that the DTSM method can be extended to multiple subsystems having

multiple constraints. However, in order to keep the mathematical notation simple and focus on

the important findings, the following chapter will be based on two conflicting subsystems.

It is assumed that all the subsystems are physical systems connected through energetic

junctions [Karnopp et al, 1990]. There are two types of junctions and they can be described by

the following junction equations:

m
e~ f =0 (3.6.1)

and

m

f ej =0, (3.6.2)

where e andf are effort and flow variables, respectively. Equation (3.6.1) describes the common

effort junction, of which the effort variables, such as force, pressure, voltage, etc., satisfy the

continuity condition. The flow variables of the common effort junction satisfy the compatibility

condition. This is a generalization of Kirchhof's current law. Equation (3.6.2) defines the

common flow junction, which is symmetric to the common effort junction. The common effort

junction is used in the following discussion since the common flow junction exhibits similar

behavior.

It is convenient to use bond graph to represent the energetic junctions and causal relations

of the connected subsystems (Karnopp et al, 1990). Figure 3.6.1 shows a common effort

junction with m connected subsystems.

If one and only one subsystem provides an effort to the junction, the junction is free of

causal conflict. Figure 3.6.1 shows such a case. Subsystem 1 provides an effort to the junction

and the junction passes the effort to all other connected subsystems.

43

Sub-system 2

Sub-system 1 0 Sub-system m

Figure 3.6.1 A common effort junction with compatible boundary conditions.

If no subsystem dictates the effort of the junction, such as the case shown in Fig. 3.6.2,

we have to use the compatibility property of the flow variables to find out the common effort

variable. The compatibility equation

m

g = If =0
J

(3.6.3)

is used to determine one unknown common effort e. This is a scalar case of causal conflict, and

the unknown common effort e is the boundary variable z.

Sub-system 2

Sub-system 1 0 Sub-system m

Figure 3.6.2 A common effort junction without a subsystem dictating the effort variable.

Sub-system p

Sub-system 1 0

Sub-system p+1

Sub-system m

Figure 3.6.3 A common effort junction with multiple subsystems providing the effort variables.

44

On the other hand, if multiple subsystems provide effort outputs to the same junction, a

different type of causal conflict occurs. As shown in Fig. 3.6.3, subsystems 1 through p all

provide effort outputs, which must be the same. We have to determine p flow variables to

supply to subsystems 1 through p so that all p subsystems provide the same effort output

satisfying the continuity condition. We have p unknown flow variables treated as boundary

variables zI, ... , z,. The continuity condition is given by

e, = e2 =''' = ep,. (3.6.4)

These include p - 1 independent constraint conditions. One choice of such p - 1 constraint

equations are

g= e -e = 0

S- ejl = 0 (3.6.5)
g1 = ej -e+, 1 =0

gI=e -e = 0

where j can be any one of the p subsystems. The compatibility condition provides another

constraint

m

g, = f, =0 (3.6.6)

or

g, = zi + Zfi = 0. (3.6.7)
j=1 j=p+l

Therefore, we have p constraint equations and p unknown boundary variables z's. This is a

vector case of causal conflict. The index number of the algebraic constraint formed by the

compatibility equation is one, while the indices of the constraints formed by the continuity

45

equations depend on the p subsystems. The index 1 constraint, Eq. (3.6.7), can be used for

p-1 m
reducing the number of z variables. Solving it for z= - zi - f, = 0.

j=1 j=p+1

To deal with multiple constraint, the sliding variable must be extended to a vectorial

variable

s = [si, S2, ... , sj, ... , sP]T. (3.6.8)

Each component of s is defined as given by Eq. (2.3.4) with its own index number. The DTSM

method can be extended to a class of multiple constraint problems as long as the vector index

exists. The sensitivity Jacobian Jz becomes a Jacobian matrix and a matrix norm must be used

for the convergence condition. If the algebraic constraints are defined as Eqs. (3.6.5) to (3.6.7),

the Jocobian is sparse and can easily be inverted.

46

IV Input-Output Linearization Analysis of Co-Simulation

4.1 The Effect of y

4.1.1 Example

The example in Chapter 3 demonstrates that the Boundary Condition Coordinator is able to

enforce the algebraic constraint in a stable manner through appropriate choice of values for n and

vo, as predicted by the multi-rate DTSM method. However, the effect of the DTSM controllers

on the subsystem simulators has not been studied yet. Both the single-rate and the multi-rate

DTSM analyses presented so far are based on the assumption that all subsystem simulators are

stable. Therefore the stability of subsystem simulators when the algebraic constraint is replaced

by the DTSM-based Boundary Condition Coordinator will be investigated in this chapter.

Using the exemplary system in Chapter 3 as a starting point, a set of simulations are

performed, starting from a consistent set of initial conditions with the coupled system excited by

a sinusoidal input from the pump. The simulations are run three times under the same conditions,

except for the choice of parameter p which defines the internal dynamics of the sliding manifold,

is different. The step size At, the minimum magnitude of the control input vo and the multi rate

parameter n is 0.1, 1000, and 20, respectively. The parameter p in Eq. (2.3.4) takes on value of 1,

0.1 to 0.04 in the three simulations and the results are given in Figs. 4.1.1, 4.1.2, and 4.1.3,

respectively.

Comparing the results shown in Fig. 4.1.1 and Fig. 4.1.2, we find that smaller U leads to

smaller errors in both the sliding function s and the algebraic constraint g. However, there is a

lower threshold for which this observation holds: the simulation becomes unstable when an even

smaller u (p = 0.04) is used as shown in Fig. 4.1.3. There is no indication of instability of any

cause for the sliding function for different values of parameter u in the analysis of DTSM. Thus,

the source of instability must come from the subsystem simulators.

47

Cz

0
CL

60

50

40

30

20

10

0

-10
0 0.5 1 1.5 2e

time (s)

0 0.5 1 1.5 2
time (s)

0.02

c' 0.01
C'

0

-0.02

0 0.5 1 1.5
time (s)

-* 9
--: 2 tg'

0 0.5 1 1.5 2
time (s)

Figure 4.1.1. Effects of parameteryp(p= 1).

48

0.6

0.4

0.2

-0.2

-0.4

x -'i-

Co

Ci

0~

0.025

0.02

0.015

0.01

0.005

0

-0.005

-n M

.

>

.

0 0.5 1 1.5 2
time (s)

-4
x10

0 0.5 1
time (s)

(a.

60

50-

40

30

20

10

0

-10

'.3

2

0
-2

1.5 2

0 0.5 1 1.5
time (s)

-4
x10

0 0.5 1 1.5 2
time (s)

Figure 4.1.2. Effect of parameter p (p = 0.1).

49

0.6

V/A
-1 x

x

0
CL

Ci)

0
-a

0.4-

0.2

0

-0.2

-0.4

2.5

2

1.5

1

0.5

0

-0.5

-1

-: 2 ig'g
- -3-3

0 0.5 1 1.5 2
time (s)

-5
x10

I.. '

2

0

CO

U)
CL

0

C0

60

50 -

40 -

30 -

20

10

0

-10

2

~1

-N 00)

0--- -2

3

0 0.5 1 1.5 2
time (s)

0 0.5 1 1.5 2
time (s)

-4
x10

0 0.5 1 1.5 2
time (s)

Figure 4.1.3 Effect of parameter p, (= 0.04).

50

0.6

0.4-

0.2-
E

0.

-0.4

- V/A)
-e- x

0

-2

-*- 9
. p-2g'

>

4

-
>

4.1.2 A Linear Case

In order to learn the cause of the instability, a simple linear case is investigated first. Consider

the following index 3 linear DAE system:

x = Ax + Bz

g(x)=Cx=0
(4.1.1)

The values of the coefficient matrices of the system are given by:

-20 1 1 0

4 -10 0 0

15 -20 -50 5

-2 3 5 -9_

B=[O 1 0 0]T (4.1.3)

and

C = 1 0 1 0]. (4.1.4)

This system can be viewed as resulting from two algebraically coupled subsystem simulators.

0

-x =- Ax + Bz-of X0.C

[g, k,]T

controller
/p2 g+2pg+g=0=fct(z)

Figure 4.1.4 The block diagram of a linear system.

A sliding manifold is defined using Eq. (2.3.4) and the sliding function is enforced by a

DTSM controller. The DAE realization can be seen as a control problem with a block diagram

as shown in Fig. 4.1.4. The DTSM controller block effectively moves two closed-loop poles to -

1/p without adding any nonlinearity to the system. A plot of the closed-loop poles with

51

parameter u varying from 0.025 to 0.01 is shown in Fig. 4.1.5. Since the system is a fourth order

system, it has 4 poles. Two of the 4 poles are located on the right side of the plot and they do not

move when the parameter p changes. The two other poles are coincident and are thus shown

with one pole on top of the other. The two coincident poles move from

-40 to -100 when p changes from 0.025 to 0.01. Clearly, imposing dynamics of the sliding

manifold Eq. (2.3.4) to the system changes the eigenvalues of the closed-loop system. This

shows that the Boundary Condition Coordinator based on the DTSM controller changes the

dynamics of the subsystems.

1
poles moved by internal dynamics

controller

0.5-

0= 0.01 p= 0.025
-0.5-

-1 ' ' ' '
-120 -100 -80 -60 -40 -20 0

Figure 4.1.5 Effect of p in a linear system.

If the study of the closed-loop system were undertaken in an ideal continuous domain, the

conclusion would be that small u is preferred to make the system converge to the algebraic

constraints faster and with smaller error. However, some subsystems may be simulated using

certain explicit numerical integration methods which do not provide for absolute numerical

stability. For instance, to stably simulate a dynamic system with fast modes requires a very

small step size. If the step size is not small enough, the fast dynamics will cause numerical

instability. Therefore, guaranteeing the stability of the DTSM controller is not enough for

ensuring the stability of the entire Co-Simulation. The fast dynamics of the sliding manifold

52

may make the overall system numerically unstable. Hence, it is necessary to ensure that the

choice parameter p does not result in instability of the subsystem simulators.

4.2 Influence of DTSM on Stability of Subsystems

Consider the two algebraically coupled subsystems shown in Fig 2.5.5. Ignoring subsystem C,

the remaining subsystem simulators A and B and the Boundary Condition Coordinator can be

represented in a control block diagram as shown in Fig 4.2.1, assuming the index is 3. Since the

purpose of this chapter is to study the stability issue caused by the additional discrete-time

sliding controller, the instability problem arising from the interconnection of the two subsystems

is not considered here. Two stable subsystems connected in a feedback configuration may

become unstable then the simulation should reflect this instability. Therefore, we can replace the

dynamic subsystem A with a time function yA(t) and we can assume that yA(t) and it time

derivatives are small. The block diagram of Fig. 4.2.1 becomes the block diagram shown in Fig.

4.2.2 and the DTSM controller pushes the output of subsystem B, yB(t), to track the desired

trajectory yA(t). The DAE realization problem is thus converted into a trajectory tracking

problem. From the definition of the sliding manifold:

d r-1
s(XZ,t)= p -+1 g = 0, (2.3.4)

dt

note that this problem is essentially equivalent to an Input-Output linearization problem.

+ fB (X Z' 0 X ,-gB) B YA YA= A(XA A fA (XA IZ' 0-

z =- 2g+2pg+g

=fct(z)

controller

Figure 4.2.1 Block diagram view of realization of algebraically coupled systems.

53

+ B B(XB,=Z0 y g(
XB EB YA

controller

Z0 - p + +2pg + g 9

=fct(Z)

Figure 4.2.2 Block diagram of Input-Output linearization control.

The feedback linearization techniques of nonlinear control theory use the feedback

controller to convert a nonlinear system into a linear or a partially linear one [Khalil 1996;

Vidyasagar 1993]. The sliding manifold Eq. (2.3.4) can be viewed as a special case of an

exponentially stable tracking error dynamics. In general, the tracking error dynamics may have

different eigenvalues. Since only part of the system dynamics, i.e. the output, is linearized, this

feedback linearization is an input-output linearization. The internal dynamics of the input-output

linearized system is often nonlinear and we have to guarantee that these internal dynamics will

not explode due to the external feedback.

4.2.1 Subsystems in Partial Controller Canonical Form

Many physical systems such as the one shown in Fig 4.2.3 are modeled in a special way. The

following equations are the system model for the system shown in Fig. 4.2.3:

x1 = x

2= 2(x,z,t)

i= f3(x,t)
(. . (4.2.1)

x, = fn(x,t)

y =x

Variables xj, x2, and i2 is displacement, velocity and acceleration of the mass m1 , respectively.

The displacement xj is the output of interest of the subsystem and z is the input that we can

design. The input z does not affect the rest of the system -3 ~ i, so the subsystem (ij ~i2)

represents the external dynamic of this input-output pair. The external subsystem is in controller

canonical form, in which only the last differential equation of the system can be nonlinear.

54

rest of
system _

Figure 4.2.3 Example of systems in partial controller canonical form.

The control problem is to design a force input z to force the displacement output, y, to

follow a desired output yd. Defining the tracking error as:

e y - Yd, (4.2.2)

and using positive constants ki, k2 and k3 so that the error dynamics are always stable:

k1B+k 2 +k 3e =0. (4.2.3)

for the choice of constants ki, k2 and k3 equal to p2, 2p and 1, respectively, the error dynamics

reduces to that of the sliding manifold given by Eq. (2.3.4). The error dynamics can be solved

for the input z. The DTSM methods are thus able to generate the input z that forces the system

trajectory to stay on the manifold.

Substituting the input z into Eq. (4.2.1) and closing the loop, we obtain

x1 = x

2 1
2Yd(X 2 Y d 2i 1 Yd)

i= f3 (x, t) (4.2.4)

-in =f.(, (X)

The closed-loop system, Eq. (4.2.4), can be divided into two parts: a linearized external input-

output dynamics (i ~ j2), and a nonlinear internal dynamics (- 3 - i) that is not directly

influenced by input z. Since the input-output dynamics is now completely linear, we can place

its poles at arbitrary location. Also, because of the linearity of the input-output dynamics, it is

easy to find a parameter u that guarantees numerical stability of the dynamics for a given explicit

integration algorithm with a given step size At. The internal dynamics is not directly involved in

the feedback loop and its stability can be inferred by studying the zero dynamics of the system.

55

The zero dynamics is defined as the internal dynamics (i3 ~ in) when the output of the

system y is constantly kept at zero. Zero dynamics is an intrinsic system property and thus is

independent of control laws that keep the output constantly zero [Slotine and Li, 1991]. We can

show that the closed-loop system is able to follow any desired trajectory, yd, if the zero dynamics

is exponentially stable in the sense of Lyapunov, and if the desired trajectory yd and its relevant

time derivatives are small.

Using a new vector w to represent state variables i3 - n and substituting Eq. (4.2.2) into

Eq. (4.2.4), the closed-loop system becomes:

C = Ae (4.2.5)

w = r(e + m, w), (4.2.6)

where vectors m and e are defined as:

M= (4.2.7)

and:

e = [e,e]T, (4.2.8)

respectively. Assuming Euler's method is used, the discrete-time form of the system is:

ek+1 = ek + At -Aek = Bek (4.2.9)

Wk+1 = Wk +At -r(ek +mk,wk). (4.2.10)

Function r is locally Lipschitz since f and x are smooth. Therefore, we have:

r(ek + mk, wk)-r(, wk -At- -k,(0ek + mk 1). (4.2.11)

Since the zero dynamics

Wk+1 = Wk + At -r(0, wk) (4.2.12)

are locally exponentially stable, the converse Lyapunov theorem guarantees the existence of a

Lyapunov function U such that:

56

k2 wk 12 U(wk) k3 Wk 12)

AUk = U(wk+1)- U(wk) -k 4 wk 12 (4.2.14)

AUkj: ksD|AwkVj, (4.2.15)

where ki, k2, k3, k4, and k5 are positive numbers.

Let V be a candidate Lyapunov function:

TVk =ekPek +k 6U(Wk), (4.2.16)

where P is a positive definite matrix satisfying

B TPB - P = -I (4.2.17)

The forward difference of the Lyapunov function candidate is

AVk =V(ek+l +mk+1,wk+1)-V(ek +mk,wk)

=ekB PBek -ekPek +k 6 [U(Wk+l)-U(Wk)]

= -ek1 + k6U(wk + At-r(ek + Mk,wk)) -k 6U(wk)

= - e 2+k 6U(wk + At.r(O,wk))+k 6U(wk +At-r(ek +MkWk)), (4.2.18)

-k 6 U(wk +At.r(O,Wk))-k 6U(Wk)

= -ek 2 +k 6[U(wk+)-U(wk)]
+k6[U(wk + At -r(ek + Mk, wk))-U(wk + At -r(O, Wk))]

Applying Eqs. (4.2.14) and (4.2.15), we have

AVk 5 -|ek 2 - k6 k4 ||Wkj 2 + k6 k5At||r(ek + Mk , Wk)- r(O,wk)|. (4.2.19)

Applying Eq. (4.2.11), we have

AVk -ek 2 - k6k4 |wk 2 + k6k5 k1(|ek1 +m k |1. (4.2.20)

We can choose k6 and a positive constant k7 such that

k6k5 k, +k 7 <1, (4.2.21)

57

(4.2.13)

and finally we arrive at

AVk k 7-ek || 2 -k 6k4 ||wk 2 +k 6k5 k,||mk||. (4.2.22)

The forward difference of the Lyapunov function is negative when |ek 11 and |Wk 11 are large and

the desired trajectory mk is bounded. This implies that |ek 11 and JWk 11 are also bounded [Slotine

and Li, 1991].

4.2.2 General Nonlinear SubsystemsGeneral nonlinear subsystems that do not conform to

the partial controller canonical form can be converted into normal form first.

coordinate transformation, a general nonlinear system

x = f(x, z, t)

y = g(x)

Applying a

(4.2.23)

is converted into the normal form:

i =(2

fr2= r1

r-1

(4.2.24)
=V(Q, 1Z')

il = W((,' 0,t

y =

The tracking error and the sliding manifold are defined as before:

e = y - Yd

d
dt

(4.2.25)

(4.2.26)1) e =0,

where (r - 1) is the relative order. A multi-rate DTSM controller provides the input z to be used

in Eq. (4.2.24).

The transformed system, Eq. (4.2.24), is in the controller canonical form and the zero

dynamics in the discrete-time form

11k+1 =lk + At-w(O,llk,tk) (4.2.27)

58

can be studied using input-output linearization analysis as described in the previous section.

However, since the transformation between the x space and the ((, TI) space is nonlinear, a stable

choice of u and At in the ((, TI) space for a given explicit integration method does not guarantee

the stability in the x space for the same integration method.

From the assumption that all algebraic constraints are caused by causal conflicts, the

input and output considered here are always collocated. Therefore the zero dynamics in the

continuous-time domain is always stable since the input-output relation is minimal phase. The

task is then to seek a choice of u and At such that the numerical simulation of the system is stable

for given explicit integration algorithm. Finding a Lyapunov function for a general nonlinear

system is often difficult. Hence, it may be more efficient to find u and At by trial and error.

A stable choice of u and At will be stored as properties of the subsystem in the simulator.

When two subsystem simulators are algebraically coupled, the Co-Simulation environment will

compare parameters u from of the subsystems and use the larger one to form the sliding function.

This guarantees that the subsystem simulators are stable when they are connected through a

Boundary Condition Coordinator. This together with the findings in Chapter 3 guarantees

stability when we convert the algebraic constraints into the Boundary Condition Coordinator.

4.3 Subsystem Relative Order and the Index of DAE

The function g in the algebraic constraint g = 0 is a linear combination of all subsystem outputs

that are constrained algebraically. Each output has its own relative order, which is an intrinsic

property of the subsystem. When the constraint equation is successively differentiated with

respect to time, the constrained input z will appear sooner or later in one or all of the outputs.

The index of the DAE then equals one plus the number of differentiations after which at least

one of the output functions yields the constrained input z. Therefore, the relative order of all

input output pairs of a subsystem is stored in that subsystem's simulator. When subsystem

simulators are connected through an algebraic constraint, the index number can then be easily

obtained.

59

V Co-Simulation with Minimum Information Disclosure

5.1 Hybrid Implementation of Boundary Condition Coordinator

In Chapter 3, the Discrete-Time Sliding Mode methods of converting the incompatible boundary

conditions into compatible boundary conditions were developed. The effect of the DTSM-based

Boundary Condition Coordinators on the subsystem simulators was investigated. Therefore we

know how to simultaneously run the subsystem simulators coupled with algebraic constraints

without changing the stability property of the overall interconnected system. We also know what

types of information are required to set up and run the Co-Simulation. This knowledge is now

used to implement the Co-Simulation.

Figure 5.1.1 summarizes how the Boundary Condition Coordinator is constructed and run.

Complete models of the algebraically coupled subsystem simulators are needed to construct the

BCC. The model of a dynamic subsystem includes state equations and output equations. The

coupling condition which describes exactly how the subsystems connected is also required. The

state equations and the output equations of any subsystem are the properties of that subsystem,

and they do not change when the subsystem is used as part of various large systems. The

coupling condition, which can be different, is supplied by the system integration engineer who

builds the coupled simulation based on the subsystem simulators.

Reducing the indices of the differential algebraic systems involves symbolic

differentiations and equation manipulations. Further similar operations are required to construct

the Discrete-Time Sliding Mode based controller. A symbolic procedure called the System

Analyzer can be built to automate the construction of the Boundary Condition Coordinator.

Maple, the symbolic mathematical language, is used to build such symbolic procedures. The

System Analyzer takes the entire models stored in the subsystem simulators and produces the

discrete-time dynamic system that provides the compatible boundary condition. The System

Analyzer also obtains parameter u and step size information from the subsystem simulators.

During the operation of the Co-Simulation, the Boundary Condition Coordinator requires

the state variables from the algebraically coupled subsystem simulators. This is because s, Jx, Jt,

and Jz are functions of the state variables, the constrained input and time.

Since one of the terms of the DTSM control law is given by:

60

Subsystem
simulator B

Imcompatible
boundary
condition

I

Subsystem
simulator B

Boundary
Condition

Coordinator

Subsystem
simulator A

2~

Subsystem
simulator A

Output variables

State variables

State equation, output
equation, p and step size

Coupling condition

Figure 5.1.1. Hybrid implementation of the Co-Simulation.

61

/

199
-44 IN

00 <;,

ak JxkA(xk,Zk,tk)+JtkAt,

the term f(xk, Z, tk) is calculated in both subsystems and in the Boundary Condition

Coordinator. This redundant computation is inefficient, especially for large or complex

subsystems. To increase the computational efficiency of the simulation, the results of the

subsystem simulators can be used in the Boundary Condition Coordinator computation:

ak JXk(Xk+1 - Xk)+ Jtk At. (5.1.1)

The Boundary Condition Coordinator appears to be using future information due to substitution.

However, if we always update the dynamic subsystems before the Boundary Condition

Coordinator, Xk+J will be readily available for use by the Boundary Condition Coordinator.

Table 5.1.1 shows the computational sequence of the example system shown in Fig. 2.5.5. In

order not to perform redundant computation, the BCC should be always updated after

subsystems A and B since the updated information from subsystem A and B can be used in

updating the BCC. However, subsystem C, which is not connected to the BCC, can be updated

at any time during one step of the Co-Simulation.

Table 5.1.1 Computational sequence of the Co-Simulation.

Sequence State Variable Updating Equation

Subsystem A XA,k+1 = XA,k + At -fA(Xk Zk ,tk)

Subsystem B XB,k+1 = XB,k + At fB (Xk Zk tk)

Subsystem C XCk+1 = XCk + At -fC (Xk ,tk)

BCC Zk+1 = Zk -vO sat(Jz1 (sk + JXk (XAB,k+1 - XABk)+ JtkAt)vo)

This substitution trades flexibility of the execution sequence for better efficiency. A

certain execution sequence is always required for the Co-Simulation systems, which consist of

algebraic subsystems as well as dynamic subsystems. The air conditioner system is one such

example in which the expansion valves and the compressor are modeled as algebraic systems.

62

(3.2.11)

Algebraic systems cannot predict future states; they only can produce results at time tk+1 when

inputs at time tk, are supplied. This requires the dynamic subsystem simulators supply the

inputs for the algebraic subsystems before updating the algebraic subsystems. Further, even if

the Co-Simulation system is a pure dynamic system, freedom of execution order is limited to a

single step because we do not intend to apply any asynchronous integration algorithms in this

research. Therefore, these extra requirement associated with removal of the redundancy does

have any substantial drawbacks.

5.2 Disadvantages of Hybrid Implementation

The DTSM methods described in previous chapters may be improved for the purpose of Co-

Simulation. The major drawback is that the previous DTSM method requires full information

about the subsystems that are connected through the algebraic constraints. Subsystem simulators

have to supply state equations, output equations, etc to build the DTSM-based Boundary

Condition Coordinator before the simulation starts. This requirement forces the subsystem

simulators to disclose their complete models. Subsystem simulator makers cannot keep their

proprietary information secret under these conditions. This contradicts the concept of object-

oriented simulation since the models of the subsystems are the implementation details and should

be hidden from other objects.

In previous implementations of DTSM methods, the sliding mode and the Jacobians were

obtained by symbolic manipulation. Symbolic processes can be automated using symbolic math

languages, such as Maple. In the early stages of this research, a Maple V procedure was

designed. It produced a dynamic approximation of any algebraic constraints using the SPSM

method. However, when this symbolic procedure was applied to a simple nontrivial system

[Asada et al, 2000], it produced 700 kB C of source code that contained the differential equation

approximation of two algebraic constraints, without any numerical integration code. That

symbolic procedure can be adapted to use the DTSM methods with little effort, but the code

efficiency will be equally low.

Some subsystems contain functions that do not have a closed-form expression. Examples

can be found in air-conditioner system components, where thermodynamic properties are

supplied by lookup tables or curve fitting. Since the DTSM methods require Jacobian

calculation, lookup tables or curve fitting will make the symbolic procedure impossible to use.

63

Therefore, the need to develop a pure numerical implementation of the DTSM methods exists.

Such a numerical approach will address non-closed-form problems and greatly improve

efficiency for subsystems with very complex closed-form representations.

5.3 Constructing Pure Numerical DTSM Using Minimum Information

The objective of improving the DTSM methods is to reduce information disclosure by subsystem

simulators and to make the new algorithm more suitable for pure numerical computation. The

computational efficiency is also a factor. Actually, allowing the use of the state variables at time

tk+J supplied by subsystem simulators makes the design of DTSM algorithms much more flexible.

This feature may be exploited to improve efficiency and more importantly to minimize the

information required by the Boundary Condition Coordinator from its neighboring dynamic

subsystems. This will allow hiding of information, which is an important feature of the Co-

Simulation environment.

The equivalent control is at the core of sliding controllers. Its definition is given by:

-1
Ok -JZk (Sk +ak). (3.2.14)

All three components of the equivalent control. (s, Jz and a) are functions of the state variables,

the constrained input, and time. The current goal is search for alternative ways of obtaining

these three components.

There are two ways of calculating the sliding function s. The way used in the hybrid

implementation is to form s as a symbolic function of the independent variables first and then to

evaluate s using the variables x, t, and z. However, as described in Chapter 2, the algebraic

constraints considered in this research all result from causal conflicts. Hence, the high index

algebraic constraint term, g, is a linear combination of m output variables of the subsystems that

are algebraically constrained:

g(x, z, t)= [b b2 ... b. ' (5.3.1)

Y.m

64

The sliding function is nothing but a weighted summation of the original algebraic constraint g

and it time derivatives:

S d M (d +r-I
s= p-+1 g=Ibj p-+1 yv, (5.3.2)

(dt j=1 dt

where r is the index of the differential algebraic system. Therefore, the other way of evaluating

the sliding function s simply depends on its definition, assuming all the algebraically constrained

subsystems supply their output variables and their time derivatives to the (r -])th order. If the

relative orders of the subsystems are different, the index number of the coupled system is taken

to be one plus the smallest relative order of the subsystems.

Requiring the time derivatives of the system outputs from the subsystem simulators does

not disclose more information about the subsystem simulators than the outputs themselves. After

all, the time derivatives of the outputs can always be numerically calculated based on the outputs.

Another term that is required in the DTSM methods is the Jacobian Jz. In the hybrid

implementation, its expression is obtained by symbolic differentiation of the sliding function

with respect to the constrained input. The goal is to determine whether this Jacobian can be

easily evaluated using pure numerical methods. Knowledge of s as a function of z is needed to

numerically evaluate the Jacobian Jz. It seems that the entire expression of the sliding function

is needed. However, further study of the sliding function definition, Eq. (5.3.2), and the

definition of the DAE index reveals that only g(r-) is a function of the constrained input z. Other

components of the sliding function are only functions of the states x and time t. Therefore, in

order to evaluate Jacobian Jz numerically, the subsystem simulators only need to supply y(r-1) as a

function of the constrained input z.

Ideally, subsystem simulators should only provide predefined outputs for any given input.

The Jacobian Jz can be obtained from an ideal subsystem simulator if different constrained

inputs are supplied. Therefore, the subsystem simulators should be programmed to provide y(r-1)

as functions of z at each time step. This will result in some additional computation and

transmission load, but no additional information about the subsystem simulators need to be

disclosed.

The a term requires much computation to construct symbolically and evaluate

numerically since it consists of Jacobian Jx. However, examination of its definition:

65

as
ak - (xk ,t, zk)'(Xk+1

ax

reveals that ak is closely related to s(xk+1,tk+1,zk) and s(Xk ,tk ,Zk):

s(xk+1,tk+1,zk)-s(xk,tk,zk)= as Xk,tkax ,Zk)-(Xk+1 -Xk) - (Xk ,tk ,Zk)At + h.o.t. (5.3.4)
at

The sliding function evaluated at (xk+1,tk+1,zk) is not physically obtainable, but it can be

calculated in a numerical simulation. Using the sliding function at (xk+1,tk+1, zk)eliminates the

need to symbolically manipulate and numerically evaluate equations to obtain Jx. Because only

the highest time derivatives y(r-1 are functions of z, (xk+1,tk+1,zk) can be calculated using

subsystem outputs y("1, Y (1 -9 r-2) and function y (r-1) .
susyte utut k+1 Yk+1 k+ k+1 (Z)

z

Zk+J

(x ,

(xk+1' tk+l' Zk+1)
Zk +n-i

n f

Z

-- --

/~12 k+-

x,t

tk +k k+1 tk+1

Figure 5.4.1 Different ways of enforcing the sliding function.

66

a9s
Xk)+---(Xk,tk, Zk)'At,at (5.3.3)

5.4 Decoupled Multi-Rate DTSM

5.4.1 Integration path

Figure 5.4.1 compares the newly proposed multi-rate DTSM algorithm with previously discussed

methods. The integration path of the new algorithm is drawn in thick lines. Instead of sampling

the system in physical time, the new algorithm uses variables evaluated at different times taking

advantage of the numerical simulation. This decouples the effect of the constrained input z from

the other variables. This new scheme is a type of multi-rate algorithm since the constrained

input z is updated n times more frequently than the state variables x.

The original single-rate DTSM method generates the constrained input z by minimizing

Sk+1 using only one step. The previous multi-rate DTSM method equally divides Axk into n equal,

small steps, and the n-th step provides z at tk,. By simply enforcing

S Xk+i+ytk+i+1 Zk +i < k+7'tk+Y'Zk+ , (5.4.1)

in the small time scale i, it is possible to guarantee

s(xk+1, tk+1, Zk+l) < s(xk ,tk ,zk) (5.4.2)

in the large time scale k.

However, the decoupled approach is more complicated. Even if we succeed in making

the magnitude of s Xk+1,tk+1,Zk+i+1 smaller than the magnitude of s Xk+1,tk+1,Zk+Y i, we

do not necessarily have

s(xk+1,tIk+1, zk+1) < s(xkI,tk, zk), (5.4.3)

since the sliding mode control in the fast time scale starts from s(xk+,tk+I,Zk) and not

s(x, tk, Zk), as illustrated in Fig. 5.4.2. Therefore, defining

and rs(Xk+n, tk+Ik ts(Xu,tkiZt| (5.4.4)

and by requiring the solution to satisfy

67

|s(xk+1 ,tk+I1 I Z <s(xk, tk+1, Zk)-, (5.4.5)

inequality (5.4.3) can be satisfied.

Condition Eq. (5.4.5) will be satisfied if we push the s function at least //n at each time

step in the faster time scale. Therefore the minimum control magnitude has to satisfy

vo > max Jz 1 /- + max R(v 1+-.
n 0 n

(5.4.6)

Defining the equivalent control as:

Xk+1, tk+1, Zo Xk+1,tk+1, k+ i
n

A.
n '

(5.4.7)

The control law is:

(5.4.8)Vk+ i =vo sat vo

n

(Xk +1 Itk+1 Zk) (Xk+1 tk+1 Zk+1)

,8> 0

<0

s= 0

0000 (

x,t,z
-, I -~

(Xk ' tk ' ,Zk (Xk+1 Itk+1 Ik+

Figure 5.4.2 Schematic of the decoupled multi-rate DTSM.

68

Xk +I, tk i, Z k+- i
n

-OXk+1,tk+I,Z k+, .
n

5.4.2 Convergence in a Small Time Scale

The first step is to show that:

s < max R(v,

is an invariant set.

Starting from within the invariant set

S Xk+1,tk+1,Zk+i < maxR v.
n

We have the following

Jz Xk+1,tk+1,Z k+ Xk+1,tk+1, Zi <max Jz- -max R(v

< max Jz-1 max + max R(V
In)

(5.4.11)

and this inequality is equivalent to

(5.4.12)O Xk+1,tk+1,Z J < VO.
k+-

Under this initial condition, the control input is

-1

V k+= 0 Xk+1,tk+1,Z k+ = -Jz

n n

Xk+1, tk+1, Z i
k+-

n

Xk+1, tk+1, Z i
k+-

nj

and the s function at the next small time step is

S xk+1,tk+1,Z i+1 = R Az ;J.
k+-- k+-

n n

Therefore we have

69

(5.4.9)

(5.4.10)

(5.4.13)

(5.4.14)

sLXk+1,tk+1, Zi+1 < maxjR(v21.
n

This proves that Eq. (5.4.9) is an invariant set.

If we start outside of, but close to, the invariant set satisfying

max R(v < s < max Jz- -max|i + max R(41 + ,
In n)'

the control input is still Eq. (5.4.13). Therefore the trajectory will move into the invariant set

after one step. If the initial condition is far from the invariant set satisfying

js|! max Jsz - + maxR (21+--,
n 0 n)

this initial condition can be written as

O xk+ltk+1,z i !vo.
k+-

n

Under this condition, the control input is:

The s function at step Xk+1

i O k+tk+lZ i .
n) n

(5.4.19)

,tk+1,k+yj) is:

S Xk+ltk+IZ i+1 = X- V
k +k+

+R Az2]
k+-

n

Taking absolute values and considering the initial condition, we have

Xk+lk+ ZJk+ J

(5.4.20)

70

(5.4.17)

(5.4.18)

V k i = VO-JZ Xk+1, k+1,Z ki -Xk+,tk+1,Z

n n)

(5.4.15)

(5.4.16)

S Xk+1,tk+1,Z i+1
n

5 S Xk+1,tk+1,Z i VO O Xk+ltk+1,z i + R A2 i .(5.4.21)

n n n

= S Xk+1,tk+1,Z i -V 0 -S Xk+1,tk+1,Z i - Xk+1,tk+1,Z i + R Az2
k+- k+- k+- k+-

n n n ny

Substituting in the equivalent control again, we arrive at:

-1

S Xk+1,tk+1,Z i+1 S Xk+1,k+1Z i -V 0 JSZ Xk+1,k+lZ i + R AZ2 J .(5.4.22)
k+- k+- k+- k+-

n n n n

Since the minimum control magnitude satisfy condition Eq. (5.4.6), the following is guaranteed:

S Xk+ltk+,Z i+1 - S Xk+1,tk+,Z i) 0 (5.4.23)
k+- k+- n n

Equation (5.4.23) shows that the invariant set Eq. (5.4.9) is attractive and the

convergence rate is larger than (,6 +)/n per step in the fast time scale.

5.4.3 Convergence in a Large Time Scale

The analysis in the fast time scale shows that the system exhibits a convergent discrete-time

sliding mode starting from (Xk+1, tk+, Zk). If the sliding function evaluated at (Xk+1, tk+l, Zk)

point is within the boundary layer of the sliding manifold s = 0, the system trajectory will stay

within the boundary layer at (Xk+1,tk+1,Zk+1). If the system at (Xk+1,tk+4 ,Zk) is outside of the

boundary layer, the system trajectory is either pushed into the boundary layer before or at

(Xk+1,tk+1,Zk+1) point, or the system trajectory moves a distance of (/8+)/n closer to the

sliding manifold.

When the system is analyzed in the large time scale, i.e., time scale k, it is also seem to

exhibit a convergent sliding manifold. If Sk starts within a boundary layer of the origin,

S(xk+1,tk+1,zk) may be closer to the origin than Sk. So, the sliding mode remains within the

71

boundary layer in the small time scale i and Sk+J will be within the boundary layer. If

S(Xk+1, tk+1, Zk) is farther away from the origin than sk, the sliding control in the small time scale

is guaranteed to compensate for the difference i, and Sk+1 will be within the boundary layer.

This shows the boundary layer, Eq. (5.4.9), is also an invariant set in the large time scale. If Sk

starts outside of the invariant set, the sliding control in the small time scale either brings the

system trajectory into the invariant set or at least J closer to the invariant set. Hence, the

invariant set in the large time scale is attractive as well. The speed of convergence to the

invariant set is finite, and at least equal to 5. Finally, the system trajectory will reach the

invariant set within a finite number of steps in the slow time scale.

5.4.4 Numerical Examples

The two examples will use the following coupled system including two dynamic subsystems:

XA1 XA,2

'A, 2 = -XA - XA 2 - XA, + atan(z) (5.4.24)

'A, 3 XA,1 - XA,2

and

XB, = B, 2

B,2 XB, 2
xB,2 XB,3. (5.4.25)

B, 3 XB, B, 2 Z

This system is subject to the algebraic constraint

YA, - YB,1 =0, (5.4.26)

where the two outputs are yA,1 = xA,1 and YB,1 = -XB,1, respectively. This is an index 3 DAE. The

subsystems are simulated using Euler's forward method with At = 0.1 and the algebraic

constraint is enforced by the Multi-Rate DTSM given by Eqs. (5.4.7) and (5.4.8).

Large vo Is Unstable
The function atan(z) is chosen to demonstrate the nonlinear effect on the choice of vo. xA,1, xA,2,

and XA,3 start from -1 while XB,1, XB,2, and XB,3 start from +1. The initial value of z is 10. This

leads to an inconsistent initial condition s # 0. Parameter u equals 0.5.

72

The remnant R(v2) is nonzero when the sliding variable s is nonlinear with respect to the

boundary variable z in the multi-rate DTSM. When vo is 20, the nonlinearity of R(v) makes z

diverge as shown in Fig. 5.4.3 and s cannot be stabilized as shown in Fig. 5.4.4. When vo is

reduced to 1, the nonlinearity R(v) is suppressed and stable results are obtained.

Small n-vo Is Unstable
All conditions remain the same from the above example except that different n and vo will be

used. This is to demonstrate that the control action has to be large enough to compensate for the

change in s caused by the change of x and t.

Both x and t are the exogenous inputs to the s dynamics. In Multi-Rate DTSM, n-vo

needs to be large enough to counteract the effects of x and t in order to stabilize the sliding

variable s. Figure 5.4.5 shows that n-vo = 10 is able to stabilize s while n-vo = 3 is not. Figure

5.4.6 shows that the boundary variable changes too slowly when n-vo is small. The sliding

variable becomes negative around t = 1 second, but boundary variable is still in the far negative

region trying to correct the positive s in the past. This leads to unstable BCC eventually.

single-rate
n=1, vo=20,u =0.5

multi-rate
n=20, v0 = , p= 0.5

- 1"\ '

1
t (sec)

I'-
I'
I'
I ~-

2
/

I
I
I

/
I

~' I
'I

1.5 2

Figure 5.4.3. Boundary variable for different vo.

73

60

50

40

30 1-

20

10

0

-10

-20
C 0.5

0.6

0.4 -

0.2 I
I'
'I

I'
Il

\ ~
I ~

I' II 'I
i It

.4 I'
Il
/l 5

S'I jIll I-I 'I /
I, 'I I

0

-0.2

-0.4

-0.6

-0.8

0 0.5 1 1.5 2
t (sec)

Figure 5.4.5. Sliding variable for different n-vo.

74

--..

multi-rate
Sn 20, vo = 1,,p = 0.5

single-rate
n = 1, vo = 20,,u = 0.5

0 0.5 1 1.5 2
t (sec)

Figure 5.4.4. Sliding variable for different vo.

- -

large n-vo
n =10, v = 1,= 0.5 \

small n-vo
. n = 3, vo = 1,,p 0.5

1

0.5

0

-0.5

S-1

-1.5

-2

-2.5

-3

-

I
A -

I

20

small n-v
15 n=3,vo= 1,lp=0.5

10 _ /
large n-vo

5 - n =10, v= 1,pu= 0.5
0/

-10 --

\ /

-15 -

0 0.5 1 1.5 2

t (sec)

Figure 5.4.6. Boundary variable for different n-vo.

5.5 Separation of BCC and Dynamic Subsystems

Pseudo codes are used to illustrate the computations taking place in a BCC and its neighboring

subsystem modules. Table 5.5.1 recapitulates the computation done in dynamic simulators and

the BCC, and the communication between the BCC and its neighboring simulators. The initial

values of the state variables and the boundary variables for subsystem modules and BCCs are set

using the Co-Simulation software environment. The computation starts at time step k from point

A. The BCC supplies the boundary variable zk to its neighboring simulators. Using Zk and the

stored Xk's, the simulators integrate one step. The simulators calculate outputs and their

derivatives y,1, Y,1 ... yr-2>, and then send these values together with the functions y(r 1) (z)

to the BCC.

Having received the information, the BCC calculates a temporary variable, which is not

affected by z, before going into the fast time scale computation. The temporary variable is a part

of the sliding variable s. This is to avoid redundant computation. The coefficient b defines the

sign of connected subsystems. Starting from point B, the boundary variable z is updated n times.

The procedure is a straightforward application of the control law Eqs. (5.4.7) and (5.4.8). After

the BCC completes n steps of computation for z, the computational thread goes back to point A

75

and the BCC sends the newly updated z to connected simulators. This completes one time step

of computation.

Table 5.5.1. Communication among subsystem simulators and BCC.

BCC

value: Zk

tmp =bj (r - 1),ryf -i +--j + Yk+i, j

Set i = 0

Zk+O/n Zk

S(Xk+,tk+1, Zk+i/n) = Z bj1r-1 i (Zk+i/n) + tmp

r-1 Ykji~ (zk+i/n +6)- y +,j (zk+i/n -g)
Jz(Xk+1,tk+1,zIk+i/nl Zbj 2

O(Xk+1, tk+I, Zk+;/n) = -Jz(Xk+l,tk+1, Zk+i/n)1 s(Xk+1, tk+1, Zk+i/n)

('OXk+1 , tk+1~ Zk+j/n
Vk+i/n = v0 sat I

VO)

Zk+(i+1)/n = Zk+i/n + Vk+i/n

If i= n - 1, then k = k+ 1, goto

else i=i+1, goto nB

Sub-Simulators

Xk+1 = Xk + Atf(Xk, tk, zk)

Yk+1 = y (Xk+1)

(r-2)
value: Yk+1,j,.k+1,j'''Yk+1,j

function: yl0(z)

76

VI Software Development

The software developed in this project realizes the idea of the object-oriented simulation. The

object-oriented simulation is a level higher than object-oriented modeling [Cellier and Elmqvist,

1993; Haier and Wanner, 1991; Andersson, 1990; Mattsson et al, 1998]. With object-oriented

modeling, subsystem models are reusable components that possess some object-oriented

properties. One can use subsystem models to form a large system model by simply connecting

the subsystem models together. No modification of subsystem models is required. When one

wants to solve the coupled system numerically, one has to compile the coupled model into a

simulator of the coupled system. This compilation and solution process is not often a simple task.

Also, information hiding is not applicable in object-oriented modeling since the function of the

model is to provide a description of the subsystem.

In this project, we apply object-oriented paradigm to the level of simulation. Each

subsystem simulator is an object. Users can run these subsystem simulator objects with

minimum knowledge of the subsystems. Subsystem simulator objects can be connected to

simulate a large coupled system without any modification. More importantly, these simulator

objects do possess the information hiding property. Users can obtain the simulation results but

cannot access the models of the subsystems.

The most difficult part of the object-oriented simulation is to deal with causal conflicts.

We have discussed the mathematical solution in the previous chapters. In this chapter, the

decoupled multi-rate Discrete-Time Sliding Mode method will be applied to develop the Co-

Simulation software environment in order to treat the algebraic constraints caused by causal

conflicts.

Most of the subsystem simulators including the Boundary Condition Coordinator are

written in Java [Sun, 2001].

6.1 Software for Different Functional Requirements

6.1.1 Co-Simulation Running on One Computer

The basic functional requirement for the Co-Simulation software environment is that every

subsystem is an independent simulator. Once the inputs to a subsystem simulator are supplied,

the subsystem simulator will produce outputs. Ideally, the users of the subsystem simulator

77

should not be required for anything other than providing the inputs, and the users should not be

able to find out the detailed implementations of the subsystem simulators. For subsystem

simulators that are connected in causal conflicts, we have to supply slightly more information.

In order to connect subsystem simulators to form a large system, we need a piece of

software, in which we can define the interconnections among subsystems. In this stage, all

subsystem simulators will be located on one single computer as shown in Fig. 6.1.1.

local computer

Str ulatr

6iumtrn

B(C+

The goa of Co-imulatin is tomake shring of simulatorir.Tecrntvsonfth

CSubsystem sno
Simulator

(JAVA)

Figure 6. 1.1 Structure of Co-Simulation.

6.1.2 Co-Simulation Running over The Internet

The goal of Co-Simulation is to make sharing of simulators easier. The current version of the

Co-Simulation software requires that all subsystem simulators run on one computer. With the

fast growth of information technology, future versions of Co-Simulation should not be confined

to a single computer.

However, Co-Simulation is different compared to other Internet-based simulation

software, such as DOME [Wallace et al, 2000; Senin et al, 2000]. The purpose of the Co-

Simulation discussed here is to simultaneously run many dynamic subsystem simulators in order

to form a large dynamic system simulator. Since the coupled system is a dynamic system, its

components have to exchange information at every time step. When the time step is small, the

information transmission speed is essential to the speed of the Co-Simulation. To the author's

knowledge, no existing Internet-based simulation software deals with dynamic simulation; they

only have to send and receive information at the start and end of the simulation. Therefore, it is

78

necessary to verify that Internet-based dynamic simulation is feasible for now and the near future.

The following calculation shows that the raw speed of 1 M bits per second is equivalent to 16384

double numbers per second.

1 Mbps + 8 (bits/byte) = 131072 Bps (byte per second)

= 131072 (Bps) + 8 (bytes/double)

= 16384 double numbers per second

The result is promising since a moderate TI (1.544 Mbps) connection can ideally transmit 25297

double numbers per second. The real transmision rate will be lower than this estimate since no

overhead has been considered.

Although implementation of an Internet-based Co-Simulation is not a part of this thesis

work, we would like to make our software structure compatible with an Internet-based

implementation. Figure 6.1.2 shows the schematics of an Internet-based Co-Simulation. The

basic structure resembles the local version shown in Fig. 6.1.1. The difference is that some

subsystem simulators run on different computers, and some components of the coupled

simulation are connected through the Internet.

6.1.3 Single-Thread Simulation

We have to consider yet another scenario. For instance, a large engineering company has many

divisions. Each division manufactures one or more components, and all the components will be

assembled to form the final product. Since all the components are made within that company,

the subsystem simulator makers do not need to hide the details about their subsystem simulators.

On the other hand, the company wants the computation of the coupled simulation to be as fast as

possible.

Simultaneously running multiple simulators is not the best choice for this scenario.

Because every subsystem simulator is independent, each simulator sends and receives

information at each time step. Comparing to lumping all the differential equations into a large

set of equations and solving them at once, this distributed approach spends some overhead time

in sending and receiving information. Therefore, it makes sense to consolidate all the equations

and solve them together if the protection of the intelectual property is not a concern. This

requires that the internal structure of the subsystem simulator is carefully designed such that the

model equations, the integration algorithm, and other necessary functions are clearly separated.

This will make it easy for an optional piece of software that extracts all the equations out of the

79

subsystem simulators and compiles them into a single-thread simulation. This functional

requirement of the object-oriented simulation can be viewed as the backward compatibility to

object-oriented modeling.

Internet

S local computer

Simmulator

Subbyyfern
SiSimulator

SusSubsse JNyte
Su ultor SiCmulatotr

E SssemSbsyte
Co-SimlationSimar niomn

Fgr6..StuteofteItre-adC-Simulatoron

6.2~~~ig SotwreArhiecu

The previous section discussed the functional requirements of the Co-Simulation software

environment. We will design the architecture of the Co-Simulation software environment to

match the functional requirements. The most important functional requirement is that every

subsystem simulator must be independent. Every subsystem simulator is an independent thread

of process. Therefore a distributed architecture is used for the Co-Simulation software

environment. Communication among subsystem simulators is done through messages. The

subsystem simulators are programmed as object-oriented objects and their states can only be

affected by sending messages to them. The Co-Simulation software performs distributed

80

computation without any central coordination. At the current stage, independent subsystems run

in the domain of a local computer. It will be easy to expand the domain to the entire Internet in

the future.

Since we are solving differential equations in order to produce simulation results at every

time step, synchronization must be maintained throughout the simulation. It is possible to apply

certain asynchronous numerical integration algorithms to solve differential equations. However,

the purpose of asynchronous differential equation solving is to utilize parallel computers.

Therefore, our intentions to adopt distributed computation are rather to achieve modularity,

information hiding, and user collaboration. We are not using distributed computation as a

means for better computational speed in this project. Therefore, asynchronous differential

equation solving is not considered and it is out of the scope of this thesis work.

With independent subsystem simulators running in a distributed manner, we need a

software environment in which we can search for available subsystem simulators, define

interconnections among chosen simulators and obtain results for the coupled simulation. The

system integrator is the piece of software designed for this purpose. The architecture of the Co-

Simulation software environment is similar to a server/client structure. The system integrator,

which can be loosely compared to a web browser, provides an interface between subsystem

simulators and the system integration engineer. The subsystem simulators are like web servers,

providing the information that the user requests from the system integrator. The communication

among the subsystem simulators is transparent to the user when the Co-Simulation is running.

The system integrator does not coordinate the execution of the subsystem simulators.

Since subsystem simulators need to solve differential or algebraic equations, send/receive

information, and synchronize with other subsystem simulators-the internal structure of a

subsystem simulator is complex. We do not expect subsystem simulator designers to know the

detailed software implementation and multi-thread programming. We therefore predefine some

base classes that include all these functionalities. The subsystem simulator designer will only

need to provide the ODE models of the subsystems and some additional information to prepare

for a possible causal conflict situation.

There are two software deliverables from this project. One is the object-oriented class

design for the subsystem simulators. Another deliverable is the system integrator, which is a thin

81

application with a friendly graphic user interface. The details of the two deliverables are

provided in the following section.

6.3 Object-Oriented Design of Subsystem Simulators

6.3.1 Object-Oriented Design

A computer program is a software copy of a real world object. We have to study the real world

object and use the most fitted software structure and data structure to represent the object in the

virtual realm. If the structure of the real world object and the software copy does not match,

usually the resulting software code is not effficient and error prone, and the software program

will be difficult to code and read.

For many software projects, the object-oriented paradigm fits real world objects very well.

Figure 6.3.1 shows the structure of an object-oriented software object [Sun, 2000]. The object

consists of two layers. The core is the state of the object and the shell is the behavior of the

object. The state of the object describe its properties, such as the speed of a car, temperature of a

room, etc. The behavior of the object describe how it interacts with the rest of the world. An

object can apply influence to other objects, such as cold air cooling off people in a room. An

object can also be influenced by other objects, such as the speed of a car changing because of the

wind. The state of the object usually should not be changed by other objects directly.

The object-oriented paradigm fits with the subsystem simulators quit well. The core of a

subsystem simulator consists of state variables and other variables. It is not physically realistic

to change a state variable of a subsystem directly from outside. For example, we cannot change

the speed of a moving object directly. Instead, we have to apply a force in order to change its

speed. The shell layer of a subsystem simulator consists of the input/output functions of the

subsystem model. The state variables of a subsystem simulator will be influenced by inputs that

the subsystem receives.

The object-oriented paradigm also features encapsulation that can be used to achieve

information hiding, one of the most important functional requirements of the subsystem

simulators. Subsystem simulators maker can keep their system models secret. The detailed

implementation of a subsystem simulator is also proprietary to the subsystem simulator maker.

The users of the subsystem simulator can only supply inputs and obtain outputs from the

simulator. The builder of subsystem simulators should be able to make some states or

82

Ij

parameters open to the users and keep some data inaccessible from the users. The users may

select some of the available data from subsystem simulators for post-processing.

Variables
(state)

Methods (a
(behavior) A E

0

Figure 6.3.1 The structure of an object.

Inheritance is another feature of the object-oriented program design and it plays an

important role in subsystem simulator development. The basic element of Co-Simulation is the

subsystem simulator. In a coupled simulation, there are various types of subsystem simulators.

The most common subsystem simulator is the dynamic subsystem simulator. We have to use the

Boundary Condition Coordinator as a subsystem simulator whenever there exists causal conflict.

Some subsystems may simply be algebraic relations. We even use some special subsystems that

only provide the boundary condition. These subsystem simulators behave differently. However,

they share some common features. With inheritance, we can simply define a parent class for the

general subsystem simulators, and all different special subsystems can use that feature without

implementing it by themselves. Inheritance can be passed on to several layers. For example, all

dynamic subsystem simulators have to solve differential equations. The solution methods for

differential equations can be defined in the dynamic subsystem class. All specialized dynamic

subsystem simulators that share the solution inherit the solution method from the dynamic

subsystem class. At the same time, they also inherit properties and behaviors common to all

subsystem simulators from the subsystem base class.

6.3.2 Synchronization

The basic function of all types of subsystem simulators is to get inputs and generate outputs.

Therefore input/output behavior is common to all subsystem simulators. Since most subsystem

simulators require inputs before they can calculate the outputs, the timing of the operation of an

individual subsystem simulator must be regulated.

83

The Co-Simulation environment adopts a software architecture of distributed multi-

processing without central coordination. The important task of synchronizing the dynamic

simulation is carried out by the individual subsystem simulators. Every subsystem simulator

takes inputs from connecting subsystems simulators at every time step. However, every

subsystem simulator is an independent process and knows nothing about other subsystem

simulators. If one simulator tries to get information from the other simulators without any

regulation, the subsystem simulator may get old information from the last time step or future

information for the next time step. Neither case causes beneficial results. Therefore, subsystem

simulators must keep track of their inputs and outputs.

The real issue here is that two independent processes have to access a single data object.

The two processes must operate on the data object one by one in an interlaced sequence.

Simultaneous access is not allowed. The data object must keep track of its own status. If the

data are ready for the first process, the first process will be allowed to operate on the data. If the

data are ready for the first process but the second process wants to access the data, the data

object will tell the second process to wait until the first process completes its operation.

If a subsystem simulator communicates with only one other subsystem simulator, the

possible conflict is easy to solve. The subsystem simulator that provides output can utilize a flag

for its output data. If the output has already been read by the other subsystem simulator and the

data acquisition changes the state of the flag, the output subsystem can proceed to replace the

output data object with an updated one and set the flag again. However, subsystem simulators

usually communicate with several other subsystem simulators. If one subsystem simulator needs

to obtain inputs from several other subsystem simulators and receives data from output providers

one by one in a loop, and if the first data provider is not ready to provide the data, the rest of the

simulators have to wait even if they are ready. When Co-Simulation is running over the Internet,

data transmission may account for a considerable amount of time. The waiting for data and

sequential data transmission may contribute to lower overall speed of the Co-Simulation.

The solution is to launch an independent thread for each send function of a subsystem

simulator, so data will be transmitted concurrently. Figure 6.3.2 shows an illustration of data

transmission among three subsystem simulators. Every subsystem has an output data storage

object for each output port of that subsystem. The output data storage objects are part of every

subsystem simulator. The send function of the subsystem simulator is a multi-thread function.

84

There is one thread for each output data storage object, and each thread calls the put function of

its output data storage object. The put function will wait if the existing data of the output data

storage object have not been read. The put function will set the output data storage object with

the new data and return if the existing data have been read. After all the put functions of output

data storage objects return, the send function of the subsystem simulator returns and the

subsystem simulator's main process goes on. The receive function of subsystem simulators

functions in a similar manner.

SubsystemSuste

A

output
0 storage object

Subsystem thread
B

Figure 6.3.2 Mulit-thread input/output of subsystems

6.3.3 Computational Logic

Depending on different subsystem simulator categories, subsystem simulators generate outputs

in different ways. A general subsystem is modeled as follows:

Xk+1 =f(xk,uk) (6.3.1)
Yk+1 ~ Y(Xk+l ,Uk+l)

where x, u, and y are states, inputs and outputs, respectively. If the subsystem is a causal

dynamic system, the feedforward term Uk+J is zero. Such systems only require input information

at time tk to produce result at tk,. Causal dynamic systems have state variables, which require

memory and initial conditions. For pure algebraic subsystems, there is no state variable so they

do not need memory or initial conditions. They do not predict the future state and they produce

output at time tk+1 when the input at time tk+J are provided. Boundary Condition Coordinators

using the decoupled multi-rate DTSM method discussed in Chapter 5 are non-causal dynamic

85

i

systems. They have memory but also require information at tk+J to produce results at tk+J. Table

6.3.1 summaries all possible subsystem characteristics.

Table 6.3.1 Subsystem characteristics.

state @ tk

storage

state @ tk+i

input @ tk,1
state @ tk+ c@t

output
calculating

process output @ tk,,

Figure 6.3.3 Common computational logic

The flow chart for the general subsystem is shown in Fig. 6.3.3. The flow chart is

consistent with Eq. (6.3.1). All of the different subsystem simulators are based on this common

computational logic.

In every subsystem simulator, there is a main loop that consists of the mathematical

computation, information receiving and information sending. However, for different subsystem

simulators with different characteristics, the structure of the main loop is different. Figure 6.3.4

shows the main loop for causal dynamic subsystem simulators. The loop starts from the small

circle, which supplies the initial condition. When the dynamic subsystem simulator begins

normal operation, the simulator goes through the send, receive, state updating process, and

86

Memory Require input at tk, to

(Initial Condition) generate output at tk+J ?

Causal Dynamic Yes No

Non-Causal Yes Yes
Dynamic

Algebraic No Yes

Source No No

output calculating process blocks in the loop. The send block and the receive block use the

multi-thread send and receive function discussed in previous section, respectively.

------ tk

0
0

output
calculating
process

Figure 6.3.4 Subsystem simulator logic of causal dynamic systems.

The logic of the Boundary Condition Coordinator is shown in the flow chart of

Fig. 6.3.5. The BCC requires an initial value for the constrained input z, which can be viewed as

the state variable of the BCC. The BCC is also a non-causal dynamic system so it requires input

at time tk and tkJ to produce the result Zk,. Therefore, the BCC takes input at the start of the

simulation (to) and stores it in its memory. With the initial condition of z, the BCC can send the

output to other subsystem simulators at to. After the initialization period, the BCC first takes

inputs Uk+1, and then calculates output Zk+1 with the stored Zk and Uk from the last step.

The simulator logic of the pure algebraic systems and source systems are very simple,

and their flow charts are given in Fig. 6.3.6 and Fig. 6.3.7, respectively.

87

0
0

sto rage

Figure 6.3.5 Subsystem simulator logic of BCCs.

tkt

LL

0.
o output
- calculating
E process

Figure 6.3.6 Subsystem simulator logic of pure algebraic systems.

t
output

CL calculating
0o process
0

E

Figure 6.3.7 Subsystem simulator logic of source systems.

6.3.4 Class Tree

Now that important functions and subsystem simulator logic have been explained, we are ready

to show all the classes that we have developed in an inheritance tree structure shown in Fig. 6.3.8.

The base class for subsystem simulator is Subsystem, which implements a runnable interface

88

to become an independent thread of process. Behaviors and properties common to all different

subsystem simulators are defined in class Subsystem. Among many common properties

defined in this class are arrays of the state variables, input variable, output variable, and output

storage objects. The common behaviors include the multi-thread send and receive methods

discussed earlier in this chapter. A setConnection method is defined to connect one of the

subsystem simulator's output port to another subsystem's input port. Abstract methods

setDescriptions and setPublishedData are defined to make a derived class always select some

data to publish and to provide descriptions of the published data. The subsystem class also

provides two default methods for the two aforementioned abstract methods so that the derived

classes have an option to simply use the default information.

We derive four classes from the Subsystem classes. They are DynamicSub,

AlgebraicSub, BCC and Source. These four classes are all abstract classes, which means

that they can only be used as class templates for deriving subclasses. Abstract classes cannot be

instantiated into objects because they are abstract generalizations without detail implementation.

The Dynamic Sub class is a widely used class since there are many dynamic subsystems

in a coupled system. The most important method of the Dynamic Sub class is the run method.

The basic structure of the run method has been already shown in Fig. 6.3.4. The send and

receive methods used in the run method are inherited from the base class Subsystem. The

nextStep method, which utilizes a generic IntMethod class to perform numerical integration,

updates the states in the run method. The subclasses of DynamicSub will override the

IntMethod class using classes that perform different numerical integration algorithms, such as

Runge-Kutta, Euler, etc. The DynamicSub class also defines many abstract methods, such as

the differential equations diff, the highest order derivative as a function of the constrained input

ydd, and the initial condition ic. Subsystem simulator builders will design their specific

simulator classes for different dynamic subsystems based on the DynamicSub class. Different

diff, ydd and ic methods set different subsystem simulators apart. The DynamicSub class

overrides the setConnection method defined in the base class Subsystem since the dynamic

subsystem simulator may connect to the Boundary Condition Coordinator, which requires not

only output variables but also time derivatives of the output variables to run.

89

Being a subclass of Subsystem, the BCC class's most important method is also run.

However, the detailed implementation of the BCC's run method is much different than

DynamicSub's. The BCC class's run method adopts the decoupled multi-rate DTSM algorithm

for solving the constrained input z. Method jacobian, s_cal and dtsmm2 calculates Jacobian Jz,

sliding function s, and constrained input z, respectively. The BCC class is a very detailed class.

Thus, its subclasses only need to define a few parameters, such as the minimum magnitude of the

control input vo and the multi-rate parameter n.

The AlgebraicSub class is very simple. Its run method realizes the flow chart given

in Fig. 6.3.6. It predefines an abstract method output, which can be defined by its subclasses to

represent different algebraic relation between the input and the output. The Source class is

very simple as well. Its run method realizes the flow chart given in Fig. 6.3.7. It predefines an

abstract method output, which can be defined by its subclasses to supply different outputs as the

functions of time.

Subsystem simulators derived from these four abstract classes are not part of the Co-

Simulation software package. These classes will be defined by builders of different subsystem

simulators. Subsystem builders can fully utilize all predefined class templates without writing a

single line of code. They can also make their own abstract class to funciton a subsystem

simulator template, such as the HeatExchanger class that is subclassed by IndoorUnit and

OutdoorUnit class shown in Fig. 3.6.8.

Through all abstract classes shown in this inheritance tree structure, the basic functional

requirement of the Co-Simulation software environment is achieved. Although the basic Co-

Simulation software only does multi-process simulation on one computer, future extension of the

Co-Simulation software is very easy due to the carefully designed object-oriented software

structure. If we want to do Internet-based Co-Simulation, we only have to change the

implementation of the send and receive methods in the Subsystem class. All subclasses

derived from the Subsystem class require no modification from the subsystem simulator

builders' point of view. If we want to solve the coupled system in a single native process, we

can simply extract the models from the subsystem simulators and compile the subsystem models

into a large simulator. The compiler will be easy to design since the subsystem simulator classes

contain almost nothing beyond the system models.

90

6.4 User-friendly System Integrator Design

The other software component of the Co-Simulation software environment is the system

integrator. It actually serves two different purposes in the architecture of the Co-Simulation

software environment. On one hand, the system integration environment provides the

subsystem-human interface so that we can connect subsystem simulators, run the coupled

simulation and get the simulation results. On the other hand, the system integration environment

implicitly serves as the server environment, on which subsystem simulators run. For future

Internet-based Co-Simulation, we have to divide these two functionalities since the system

integration environment and subsystem simulator servers are not usually located at the same

place.

'I Subsystems
(Ci Dynamic SubSystems

B class CoSim.subl

B class CoSim.sub2

B class CoSim.SubA
) class CoSim.SubB

B Algebraic Subsystems
0- 1 Boundary Condition Coordinators

P [1 Vector BCC
D class CoSim.VBCC3

17L Sources
ELi Sinks

Figure 6.4.1 System integration environment.

91

Subsystem Boundary Subsystem
A Condition B

SCoor dinat

S our ce
for

Te sting
Subsysteiu

For the current version of Co-Simulation, the server function is very simple and we will

mainly introduce the system integration part. All available subsystem simulators are shown in

the left pane organized by subsystem type. The system integration engineer can pick subsystem

simulators shown on the left and place in the system integration pane on the right. Subsystem

simulators appear as blocks in the system integration pane. Input and output ports are displayed.

The system integration engineers can use the mouse to make connections among subsystem

simulators. The integration environment carries this out by calling the setConnection method of

subsystem simulators. Right clicking the subsystem simulator blocks, the system integrator can

select available data to save and plot. Users can also use the mouse to move subsystem blocks

and input output ports around to make the connected subsystems and connecting lines in order.

The tool bar buttons make it easy for users to start the coupled simulation, save results, etc.

92

java.lang.Thread

Subsystem
L-----------------I

Ko

Figure 3.6.8 Class tree of subsystem simulators.

93

Base class

Subsystem base class

Base classes with
different behaviors

Classes made by
subsystem designer

Instantiatable classes

Abstract classes

r -------------- i
-- lol, BCC

L

Ty;

VI Co-Simulation of a HVAC System

7.1 Introduction of Building Energy System

The building energy system includes heating, ventilation and cooling systems in the commercial

and residential buildings. The building energy system is a large-scale system that consists of

many subsystems. These subsystems may belong to different energy domains. Although the

Heating, Ventilation, and Air-Conditioning (HVAC) system appears to be a simple building

energy system, it can be complex as well. Figure 7.1.1 shows an HVAC system for small

commercial buildings. The manufacturers of the HVAC equipments often work together to

supply an HVAC system. The Co-Simulation software environment is a very good tool for

cooperation among companies that are involved in the HVAC business. The component makers

and system integrators can simulate a large HVAC system to provide more information for

design, operation and maintenance. The Co-Simulation provides a good environment for these

engineers to share their subsystem simulators and to study different system configurations.

An example of the multi-unit commercial air-conditioning/heat pump system with two

indoor heat exchangers is studied in this chapter. When subsystem simulators of the multi-unit

air-conditioning/heat pump system are connected, causal conflicts occur between the indoor units

and the accumulator. The Boundary Condition Coordinators are used to resolve these causal

conflicts.

94

Compressor unit Inverter unit
constant speed compressor variable speed compressor

Power-up unit Function expansion valve expansion valve
heat exchanger unit heat exchanger heat exchanger

HF ___

.-11111 I............

Unit Indoor Unit
IF(YFJ36KAI FXYFJ36KAI

)(3.6kW)

Indoor Unit
FXYCJ36KAI

Room 2

Indoor Unit dorUi
FXYCJ45KA FXYCJ45KA

(4.5kW)(

Figure 7.1.1 A commercial building HVAC system (courtesy Daikin).

95

Indoor Unit Indoor Unitn t
FXYAJ28KA FXYHJ45KA FXYHJ45KA

(2.8kW) (4.5kW)(

7.2 Modeling of Multi-unit Air-Conditioning/Heat Pump System

A simple air-conditioning/heat pump system consists of a compressor, an outdoor heat exchanger,

an expansion valve, an indoor heat exchanger and an accumulator. Multiple indoor units can be

installed in different rooms and the outdoor heat exchanger, the compressor and the accumulator

are shared. The multi-unit system considered here comprises seven components, which are

shown in Fig. 7.2.1. Among the seven components of the system, there are four types of

different modules. The mathematical models for the different types of modules are given in the

following section. Only the state variables, inputs and outputs are introduced here. The

complete models can be found in [Asada, 2001]. Note that the subscripts used in the following

sections are local to each section.

7.2.1 Two-Node Heat Exchangers

There are three components that are modeled as the two-node heat exchangers. These heat

exchangers can be simplified into lumped parameter models with four state variables despite

they are all distributed parameter systems [He, 1996]. These heat exchangers can operate in

either evaporator or condenser mode. In the cooling mode, the indoor units function as

evaporators and the outdoor unit functions as a condenser. In the heating mode, outdoor and

indoor units exchange their roles.

The model of the two-node heat exchanger is the following

Sf (x, u)
(7.2.1)

y=y(x)

where

x =[P, y, T,, TS I, (7.2.2)

U =[rhin,lihout, hin,Ta]T (7.2.3)

and

y =[Pout, ho,, Pin]. (7.2.4)

The variables that make up vectors x, u and y are the average evaporating or condensing pressure,

mean void fraction, tube wall temperature, mean refrigerant temperature of the superheated or

96

sub-cooled section, inlet mass flow rate, outlet mass flow rate, inlet specific enthalpy,

surrounding air temperature, outlet pressure, outlet specific enthalpy and inlet pressure,

respectively. These parameters are different for the evaporating and condensing mode.

7.2.2 Accumulator

The accumulator is also a heat exchanger but simpler than the indoor and outdoor units, and it

has only three state variables. The model of the accumulator is very similar to Eqs (7.2.1) to

(7.2.4), but the state vector is defined as

x =IP,y, TW] . (7.2.5)

The definitions of the variables and of the input and output ports are the same as those for the

four-note heat exchangers.

Outdoor
Heat Exchanger Compressor

Indoor

Expansion Heat Exchanger 1
Valve 1

Accumulator

Expansion Indoor
Valve 2 Heat Exchanger 2

Figure 7.2.1 The two-indoor-unit air-conditioning/heat pump system.

7.2.3 Compressor

The main physical process in the compressor is the momentum transfer, which is much faster

than the heat transfer dynamics in the heat exchangers. Therefore, the compressor is modeled as

97

an algebraic system. The mass flow rate output of the compressor is obtained by empirical curve

fitting

hout = fct(Pn, Pout, j), (7.2.6)

where rho , Pin, Pout and co is the outlet mass flow rate, inlet pressure, outlet pressure and

compressor speed, respectively.

The outlet enthalpy is obtained by the isentropic outlet enthalpy corrected by isentropic

compression efficiency. We have

hou, = hi + "ot'' - ,n (7.2.7)

where hin, hou, hou, s, and qs is the inlet specific enthalpy, outlet specific enthalpy, outlet

isentropic specific enthalpy and isentropic compression efficiency, respectively.

The input and output vector is defined as follows:

u =[Pi, Pout, wc, hi] (7.2.8)

and

y = [thout ,rhn, hout] (7.2.9)

The definitions of the variables are the same as the previous section.

7.2.4 Expansion Valve

It takes the refrigerant a very short period of time to flow through the expansion valve.

Comparing it to the speed of the heat transfer processes in the heat exchangers, the dynamics of

the expansion valve can be treated as an algebraic relation. The expansion is an adiabatic

process since the heat transfer is not significant in that time scale. Therefore the enthalpy of the

flow does not change, and we have

hTae = hing (7.2.10)

The mass flow rate output can be calculated by applying the orifice equation, and we have

98

rhou, =_:C cAv NI pin - Pout) ,(7.2.11)

where c, Av and p is the orifice coefficient, expansion valve opening and average density,

respectively. The input and output vectors are defined as follows:

u =[Pinhin, Put, A] (7.2.12)

and

Y =[rn thout,,hout] . (7.2.13)

7.3 Co-Simulation Setup

7.3.1 Subsystem Simulator Coding

The subsystem simulators of components of the air-conditioning system are built based on the

models introduced in the previous section. Class HeatExchanger for the two-node heat

exchanger modules is derived from the base class Dynamic Sub. This heat exchanger class can

run in both evaporator and condenser mode. The HeatExchanger class is an abstract class,

which defines all behaviors of the two-node heat exchanger. However, the geometric and heat

transfer parameters are not defined in the HeatExchanger class. We use the

HeatExchanger class as the template to develop IndoorUnit class and OutdoorUnit

class by simply specifying the geometric and heat transfer parameters. Other modules modeled

as two-node heat exchangers can use the HeatExchanger class as a class template as well.

Since we only use one type of accumulator in the simulation, the Accumulator class is

developed as a regular class, which can be instantiated. This class has similar input and output

port definition as the HeatExchanger class. However, since multiple indoor units may

connect to the accumulator in different system configurations, the input port of the inlet mass

flow rate, the input port of the inlet specific enthalpy and the output port of the inlet pressure can

be split into multiple ports.

99

indoor unit 1

Pn
h InE

in;z

indoor unit 2

BCC 1

P. Pou

in Ou

BCC 2

Figure 7.3.1 BCCs connecting the indoor units and the accumulator.

100

accumulator

h i ,I P o u t

P in, I hu

in,2 fih0il

input port

output port

The two algebraic systems, i.e. the expansion valve and the compressor, are easily coded

into Class ExpValve and Class Compressor based on the class template AlgebraicSub.

We also defined a boundary condition subsystem simulator based on the class template Source.

The boundary condition subsystem provides the indoor air temperatures, outdoor air temperature,

compressor speed, and expansion valve openings.

7.3.2 System integration

To demonstrate the coupled simulation of multi-unit air conditioning/heat pump system, we use

two indoor units in the system. Figure 7.2.1 shows the seven physical modules in the air

conditioning/heat pump system. However, there are causal conflicts between the two indoor

units and the accumulator. The accumulator and the indoor units all take pressure as the input

and produce the mass flow rate as the output. Therefore, coupled simulation has to satisfy two

algebraic constraints.

The first algebraic constraint is

outj '*inj (7.3.1)

where rho,,,1 and thin, are the outlet mass flow rate of the first indoor unit and the first inlet

mass flow rate of the accumulator, respectively. The other algebraic constraint is defined

similarly between the second indoor unit and the second inlet of the accumulator. If we

differentiate the algebraic constraints with respect to time twice, we will find the time derivative

of the pressure of indoor units and the accumulator [Gordon, 1999]. Therefore, the algebraic

constraints are index 2.

When the multi-unit air-conditioning/heat pump system is simulated in the Co-Simulation

software environment, we have seven subsystem simulators based on physical modules, two

BCCs for the algebraic constraints and one source type subsystem simulator providing the

boundary conditions. The ten subsystem simulators are connected by matching the input and

output ports of the subsystem simulators. In order to show the connections of the BCCs clearly,
Figure 7.3.1 only shows the two indoor units, two BCCs, accumulator and connection lines

among these five subsystem simulators. Other ports are also connected since the entire loop

shown in Fig. 7.2.1 is simulated.

101

The thin connection lines in Fig. 7.3.1 represent the data transfers that are defined by

input and output ports. However, the thick connection lines represent the transmission of the

data objects that consist of the pressure and the time derivative of the pressure as a function of

the mass flow rate. This capacity is predefined in the HeatExchanger and Accumulator

classes. When these two subsystem simulators are connected to the BCCs, the system integrator

software automatically sets the data type that will be transmitted.

7.4 Results

The system is set to run in the air-conditioner mode. The Co-Simulation starts from an

inconsistent initial condition. The pressure in the accumulator is 650 kPa and the pressures in

the indoor units are 700 kPa. The two indoor units are located in two different rooms. The air

temperature in the two rooms is 27 'C and 30 'C, respectively. The simulation results are shown

in Fig. 7.4.1 through Fig. 7.4.6.

Since two BCCs are used in this simulation, there are two sliding functions. The sliding

functions are driven to the sliding manifolds quickly, so Fig. 7.4.1 only shows the simulation

from time 0 to 0.8 second. The outputs of the two BCCs are the mass flow rates, which are

shown in Fig. 7.4.2. Figure 7.4.3 shows the state variable pressure of the four heat exchangers.

As a result of the algebraic constraints, the two indoor units and the accumulator should have the

same pressure. Although the starting pressures are different in the accumulator and the indoor

units, they are forced to satisfy the algebraic constraints within a certain boundary layer. Figure

7.4.4 shows the state variable mean void fraction in four different heat exchangers. The state

variable tube wall temperature is shown in Fig. 7.4.5. Figure 7.4.6 shows only three curves of

the refrigerant temperature since the accumulator has only three state variables. The refrigerant

temperature is the superheated temperature in the evaporators and is the sub-cooled temperature

in the condenser.

102

1600

1400

1200

1000-

0.02 -

0.018

a)

S0.016
0

U-

C',

as 0.014

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.
Time (second)

Figure 7.4.1 Plot of sliding function s.

.....................- Outlet of Indoor Unit 1
Outlet of Indoor Unit 2

.~ ~ ~
-V-

10 15 20
Time (second)

Figure 7.4.2 Plot of mass flow rate th,, .

103

.....................- Sliding Function 1
Sliding Function 2

C
0
C-)

U-

.:
0'

800

600

400

200

0

-200

0.022

0.01
0 5 25 30

I

0.012

I I I I I I I

0 5 10 15 20 25 3
Time (second)

Figure 7.4.3 Plot of Pressure P.

5 10 15 20 25

0

30
Time (second)

Figure 7.4.4 Plot of Mean void fraction y

104

2000

1500
0z
a.)

C',
0)
0

--- --------- -----------

------ Outdoor Unit
------------------- Indoor U nit 1
--------- Accumulator

Indoor Unit 2

1000

500

0.84

0.8
0

i 0.78
u-

0.76
a)

0.74 -

0.72 -

------------- -------

------------------ -.------ --- -*-- -- -- --- ----- -- -- ------ -----
----- Outdoor Unit

-...- ~ ~~ Indoor Unit 1 -
-..-----. Accumulator

Inrnn r I nit 9

--------------------------- ---

0.82|

0.7
0

50

45

40

35

30

--- Outdoor Unit
--. Indoor Unit 1
--- Accumulator

Indoor Unit 2

- - - - --....................

0 5 10 15 20 25 3
Time (second)

Figure 7.4.5 Plot of tube wall temperature T,.

0 5 10 15
Time (second)

20 25

Figure 7.4.6 Plot of refrigerant temperature in superheated or sub-cooled region T,.

105

-- ---

------- _ ----- -

.. ~.............
-.

.. --....--- --.-- - ...----.......... -- -........-.......

CL

U)

9

E)
U-)

20

15

10

50

0

45

40

35

30

25

20

15

0)

U)

a)a
E

a)

a)
0)

- - --- ------------- ----------

--- Outdoor Unit (Subcooled)
....................- Indoor Unit 1 (Superheated)

Indoor Unit 2 (Superheated) -

........................

-

10

5
30

Vill Conclusions and Directions for Future Work

This thesis presents a method for simultaneously running a collection of dynamic simulators

coupled by algebraic boundary conditions. Termed as "Co-Simulation", this new simulation

environment facilitates companies in a supply chain or alliance to communicate by exchanging

subsystem simulators. Subsystem simulators may dynamically be coupled with each other

through boundary conditions given by algebraic constraints. Dynamic interactions are simulated

without use of proprietary information of the subsystem models. All computations are

performed based on input-output numerical data of encapsulated subsystem simulators coded by
independent groups.

Combining such subsystem simulators may incur non-causal relationship and numerical

instability, which is identified as the major difficulty of such object-oriented simulations.

Interacting subsystems with a causal conflict are described as a high-index, Differential-

Algebraic Equation. The Boundary Condition Coordinator is used to resolve these causal

conflicts and a systematic solution method is developed using Discrete-Time Sliding Mode

control. First, stability and convergence conditions as well as error bounds are analyzed by using

control theory. Second, the algorithm is modified such that the subsystem simulator does not

have to disclose its internal model and state variables for solving the overall DAE. Third, a

multi-rate algorithm is developed for improving efficiency, accuracy, and convergence

characteristics.

Numerical examples verify the major theoretical results and illustrate features of the

proposed method. A software environment for Co-Simulation is developed. This software

environment, written in Java, defines the protocol for subsystem the simulators. Subsystem

simulators and BCCs run as independent processes in the Co-Simulation environment. Class

templates containing all necessary functions for the different types of subsystems are defined. A

real world problem consisting of a multiunit air-conditioning/heat pump system is simulated

using the Co-Simulation software environment.

However, the basic assumption of the coupled simulation considered in this thesis work is

that the algebraic constraints considered result solely from causal conflicts are considered.

Under this assumption, the solution of the DAE system always exists. Hence it is not necessary

to verify the existence of the solution before the DAE system is solved. Also because of this

106

assumption, the index of the DAE will be limited to three. Additionally these energy

transmission-based modeling tools, such as Bondgraphs, can be used to find possible input-

output pairs, which may be inverted and thus form causal conflicts. For such input-output pairs,

the derivatives of the outputs can be prepared for possible causal conflicts. If the Co-Simulation

software environment is used to simulate coupled system with arbitrary algebraic constraints,

any combination of input and output can form an input-output pair of high relative order. The

preparation for inverting all arbitrary input-output pairs is not feasible when the system is large.

Moreover, the asymptotic stability of the zero dynamics cannot be assumed. Therefore, some

analytical capabilities will be required for the Co-Simulation software environment if other types

of algebraic constraints are to be considered.

For some subsystems, one component of the output object, y(r-1)(z), needs extensive

computation to obtain. The computation of this function may critically affect the computation

time of the multi-rate BCC since this function is evaluated many times during one time step. The

computation of this function may be replaced by a nonlinear map to enable more efficient

computation of the BCC.

The extension of this feedback control-inspired approach for resolving causal conflicts to

Finite Element Analysis may be interesting. The essence of this approach is to invert only the

relevant input-output pair by guided iteration in order to resolve the algebraic constraints, rather

than iteration for the entire system. Application of this approach to distributed parameter

systems may substantially reduce the computational effort since a number of algebraic

constraints in the spatially discretized system may be large.

107

References

Andersson, M., 1990, An Object-Oriented Language for Model Representation, Licenciate thesis

TFRT-3208, Department of Automatic Control, Lund Institute of Technology, Lund,

Sweden.

Asada, H. H., Gu, B., and Gordon, B.W., 2000, "A unified approach to modeling and realization

of constraint robot motion using singularly perturbed sliding manifolds," Proceedings of

IEEE International Conference on Robotics and Automation, Vol. 1, pp. 736 -743.

Asada, H. H., He, X.-D., Gu, B., Tarraf, D. C., 2001, Simulation and Control of Building Energy

Systems, Report No. 1, Progress Report to the Daikin Air-Conditioning R&D Laboratory,

Ltd., Osaka, Japan.

Baugarte, J., 1972, "Stabilization of Constraints and Integrals of Motion in Dynamical Systems,"

Comp. Math. Appl. Mech. Eng. Vol.1, pp. 1-16.

Brenan, K., Campbell, S., and Petzold, L., 1989, Numerical Solution of Initial Value Problems in

Differential-Algebraic Equations, Amsterdam, North-Holland.

Campbell, S.L., 1995, "High-Index Differential Algebraic Equations," Mechanics of Structures

and Machines, Vol. 23, No. 2, pp. 199 - 222.

Cellier, F.E. and Elmqvist H., 1993, "Automated Formula Manipulation Supports Object-

Oriented Continuous-System Modeling," IEEE Control Systems, Vol. 13, No. 2.

Delonga, D. M., 1989, A Control System Design Technique for Nonlinear Discrete Time Systems,

Ph. D. Thesis, Massachusetts Institute of Technology.

Drakunov, S. V. and Utkin, V. I., 1992, "Sliding Mode Control in Dynamic Systems,"

International Journal of Control, Vol. 55, No. 4, pp. 1029 - 1037.

Gordon, B. W. and Liu S., 1998, A Singular Perturbation Approach for Modeling Differential-

Algebraic Systems. ASME Journal of Dynamic Systems, Measurement, and Control,

December 1998.

108

Gordon, B. W., 1999, State Space Modeling of Differential-Algebraic Systems using Singularly

Perturbed Sliding Manifolds, Ph.D. Thesis, Massachusetts Institute of Technology.

Haier, E., and Wanner, G., 1991, Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems, Springer-Verlag, New York.

He, X.-D., 1996, Dynamic Modeling and Multivariable Control of Vapor Compression Cycles in

Air Conditioning Systems, Ph.D. Thesis, Massachusetts Institute of Technology.

Hogan, H., 1987, "Modularity and Causality in Physical System Modelling," ASME Journal of

Dynamic Systems, Measurement, and Control, Vol. 109, pp. 384-391.

Karnopp, D., Margolis, D. and Rosenberg, R., 1990, System Dynamics: A Unified Approach,

Wiley-Interscience, New York, NY.

Khalil, H. K., 1996, Nonlinear Systems, Second Edition, Prentice Hall, Upper Saddle River, NJ,

USA.

Kokotovic, P., Khalil, H. K., and O' Reilly, J., 1986, Singular Perturbation Methods in Control:

Analysis and Design, Academic Press.

Mattsson, S. E., and Soderlind, G., 1993, "Index Reduction in Differential-Algebraic Equations

Using Dummy Derivatives," SIAM Journal of Computing, Vol. 14, No. 3, pp. 667-692.

Mattsson, S.E., Elmqvist, H., and Otter, M. 1998, "Physical system modeling with Modelica,"

Control Engineering Practice, Vol. 6, pp. 501-5 10.

Otter, M., and Cellier, F. E., 1996, "Software for Modeling and Simulating Control Systems,"

The Control Handbook, Levine, W. S., Ed., CRC Press, Inc., pp. 415-428.

Petzold, L. R., 1983, "A Differential/Algebraic System Solver," Scientific Computing, Stepleman,

R. S. et al., Eds., Amsterdam, North Holland, pp. 65-68.

Senin, N., Wallace, D. R., and Borland, N., 2000, "Object-based Simulation in a Service

Marketplace," to be appeared in ASME Journal of Mechanical Design.

109

Sinha, R., Paredis, C. J. J., Liang, V.- C., and Khosla, P. K., 2001, "Modeling and Simulation

Methods for Design of Engineering Systems," Journal of Computing and Information

Science in Engineering, Transactions of ASME, Vol. 1, pp. 84 - 91.

Slotine, J. - J. E. and W. Li, 1991, Applied Nonlinear Control, Prentice Hall.

Sun Micro Systems, 2001, The Source for Java TM Technology, http://java.sun.com.

Utkin, V., Guldner, J., and Shi, J., 1999, Sliding Mode Control in Electromechanical Systems,

Taylor & Francis Inc.

Vidyasagar, M., 1993, Nonlinear Systems Analysis, Second Edition, Prentice-Hall International,

Englewood Cliffs, NJ, USA.

Wallace D. R., Abrahamson, S., Senin, N., and Sferro, P., 2000, "Integrated Design in a Service

Marketplace," Computer-aided Design, Vol. 32, no 2, pp. 97-107.

Yu, X., 1994, "Digital Variable Structure Control with Pseudo-Sliding Modes," Variable

Structure and Lyapunov Control, Zinober, A. S. I., Eds., Springer- Verlag, pp. 134-159.

Zeid, A. A. and Overholt J. L., 1995, "Singularly Perturbed Bond Graph Models for Simulation

of Multibody Systems," ASME Journal Dynamic Systems, Measurement and Control,

Vol. 117, pp. 401-410.

110

