842 research outputs found

    Stochastic gravitational-wave background from spin loss of black holes

    Get PDF
    Although spinning black holes are shown to be stable in vacuum in general relativity, there exists exotic mechanisms that can convert the spin energy of black holes into gravitational waves. Such waves may be very weak in amplitude, since the spin-down could take a long time, and a direct search may not be feasible. We propose to search for the stochastic background associated with the spin-down, and we relate the level of this background to the formation rate of spinning black holes from the merger of binary black holes, as well as the energy spectrum of waves emitted by the spin-down process. We argue that current LIGO-Virgo observations are not inconsistent with the existence of a spin-down process, as long as it is slow enough. On the other hand, the background may still exist as long as a moderate fraction of spin energy is emitted within Hubble time. This stochastic background could be one interesting target of next generation GW detector network, such as LIGO Voyager, and could be extracted from total stochastic background

    ShenZhen transportation system (SZTS): a novel big data benchmark suite

    Get PDF
    Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads, however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose ShenZhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as HiBench and CloudRank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at the microarchitecture level, the operating system (OS) level, and the job level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and we propose a methodology for identifying representative input data sets

    Performance evaluation of AODV, DSR and DSDV in mobile ad-hoc network using NS-2

    Full text link
    Mobile ad-hoc network (MANET) is a set of movable hosts established without existing network infrastructure and can be self-organized dynamically. MANET protocols have faced big challenges due to dynamic changing network topology and asymmetric network link. In this paper, we simulate AODV, DSDV, DSR routing protocols in network simulator NS-2 and evaluate and compare the performance metrics for each routing protocol using packet delivery ratio, average end to end delay of packets and normalized routing overhead. We conduct the simulation by varying the sending rate of source node (2 packets/s and 4 packets/s) with different pause time using node movement model and cbr source traffic model
    corecore