30 research outputs found

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Insertion Reactions and Catalytic Hydrophosphination of Heterocumulenes using α‑Metalated <i>N</i>,<i>N</i>‑Dimethylbenzylamine Rare-Earth-Metal Complexes

    No full text
    The reactivity of homoleptic α-metalated dimethylbenzylamine lanthanide complexes (α<i>-</i>Ln­(DMBA)<sub>3</sub>; Ln = La, Y; DMBA = α-deprotonated dimethylbenzylamine) was probed through a series of stoichiometric insertion and catalytic hydrophosphination reactions. Both rare-earth-metal species inserted 3 equiv of various carbodiimides to form the corresponding homoleptic amidinates. α<i>-</i>La­(DMBA)<sub>3</sub> was also found to be a useful precatalyst for the room-temperature hydrophosphination of heterocumulenes to form phosphaguanidines, phosphaureas, and phosphathioureas in moderate to excellent isolated yields. Furthermore, through a series of stepwise stoichiometric protonation and insertion reactions, a plausible mechanism for the hydrophosphination catalysis was investigated

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Insertion Reactions and Catalytic Hydrophosphination of Heterocumulenes using α‑Metalated <i>N</i>,<i>N</i>‑Dimethylbenzylamine Rare-Earth-Metal Complexes

    No full text
    The reactivity of homoleptic α-metalated dimethylbenzylamine lanthanide complexes (α<i>-</i>Ln­(DMBA)<sub>3</sub>; Ln = La, Y; DMBA = α-deprotonated dimethylbenzylamine) was probed through a series of stoichiometric insertion and catalytic hydrophosphination reactions. Both rare-earth-metal species inserted 3 equiv of various carbodiimides to form the corresponding homoleptic amidinates. α<i>-</i>La­(DMBA)<sub>3</sub> was also found to be a useful precatalyst for the room-temperature hydrophosphination of heterocumulenes to form phosphaguanidines, phosphaureas, and phosphathioureas in moderate to excellent isolated yields. Furthermore, through a series of stepwise stoichiometric protonation and insertion reactions, a plausible mechanism for the hydrophosphination catalysis was investigated

    Formation of a Bridging Phosphinidene Thorium Complex

    No full text
    The synthesis and structural determination of the first thorium phosphinidene complex are reported. The reaction of 2 equiv of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th­(CH<sub>3</sub>)<sub>2</sub> with H<sub>2</sub>P­(2,4,6-<sup><i>i</i></sup>Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) at 95 °C produces [(C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>Th]<sub>2</sub>(μ<sub>2</sub>-P­[(2,6-<i>C</i>H<sub>2</sub>CHCH<sub>3</sub>)<sub>2</sub>-4-<sup><i>i</i></sup>PrC<sub>6</sub>H<sub>2</sub>] as well as 4 equiv of methane, 2 equiv from deprotonation of the phosphine and 2 equiv from C–H bond activation of one methyl group of each of the isopropyl groups at the 2- and 6-positions. Transition state calculations indicate that the steps in the mechanism are P–H, C–H, C–H, and then P–H bond activation to form the phosphinidene
    corecore