30 research outputs found
Recommended from our members
Structure and properties of [(4,6-tBu2C6H2O)2Se]2An(THF)2, An = U, Np, and their reaction with p-benzoquinone.
The synthesis and characterization of U(iv) and Np(iv) selenium bis(phenolate) complexes are reported. The reaction of two equivalents of the U(iv) complex with p-benzoquinone results in the formation of a U(v)-U(v) species with a bridging reduced quinone. This represents a rare example of high-valent uranium chemistry as well as a rare example of a neptunium aryloxide complex
Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity
We
report a comparison of the molecular and electronic structures of
dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thoriumÂ(IV) and uraniumÂ(IV) complexes.
For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, ThÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar
manner using KSe<sub>2</sub>PR<sub>2</sub> to produce ThÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). UÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from
UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and
3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the
homoleptic UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded UÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the
formation of UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [CuÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent
transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively.
The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and
structurally characterized using X-ray crystallography. Using the
QTAIM approach, the electronic structure of all homoleptic complexes
was probed, showing slightly more covalent bonding character in actinide–selenium
bonds over actinide–sulfur bonds
Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity
We
report a comparison of the molecular and electronic structures of
dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thoriumÂ(IV) and uraniumÂ(IV) complexes.
For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, ThÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar
manner using KSe<sub>2</sub>PR<sub>2</sub> to produce ThÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). UÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from
UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and
3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the
homoleptic UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded UÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the
formation of UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [CuÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent
transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively.
The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and
structurally characterized using X-ray crystallography. Using the
QTAIM approach, the electronic structure of all homoleptic complexes
was probed, showing slightly more covalent bonding character in actinide–selenium
bonds over actinide–sulfur bonds
Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity
We
report a comparison of the molecular and electronic structures of
dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thoriumÂ(IV) and uraniumÂ(IV) complexes.
For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, ThÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar
manner using KSe<sub>2</sub>PR<sub>2</sub> to produce ThÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). UÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from
UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and
3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the
homoleptic UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded UÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the
formation of UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [CuÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent
transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively.
The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and
structurally characterized using X-ray crystallography. Using the
QTAIM approach, the electronic structure of all homoleptic complexes
was probed, showing slightly more covalent bonding character in actinide–selenium
bonds over actinide–sulfur bonds
Insertion Reactions and Catalytic Hydrophosphination of Heterocumulenes using α‑Metalated <i>N</i>,<i>N</i>‑Dimethylbenzylamine Rare-Earth-Metal Complexes
The reactivity of homoleptic α-metalated dimethylbenzylamine
lanthanide complexes (α<i>-</i>LnÂ(DMBA)<sub>3</sub>; Ln = La, Y; DMBA = α-deprotonated dimethylbenzylamine) was
probed through a series of stoichiometric insertion and catalytic
hydrophosphination reactions. Both rare-earth-metal species inserted
3 equiv of various carbodiimides to form the corresponding homoleptic
amidinates. α<i>-</i>LaÂ(DMBA)<sub>3</sub> was also
found to be a useful precatalyst for the room-temperature hydrophosphination
of heterocumulenes to form phosphaguanidines, phosphaureas, and phosphathioureas
in moderate to excellent isolated yields. Furthermore, through a series
of stepwise stoichiometric protonation and insertion reactions, a
plausible mechanism for the hydrophosphination catalysis was investigated
Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity
We
report a comparison of the molecular and electronic structures of
dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thoriumÂ(IV) and uraniumÂ(IV) complexes.
For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, ThÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar
manner using KSe<sub>2</sub>PR<sub>2</sub> to produce ThÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and ThÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). UÂ(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from
UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and
3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the
homoleptic UÂ(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded UÂ(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the
formation of UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [CuÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent
transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and UÂ(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively.
The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and
structurally characterized using X-ray crystallography. Using the
QTAIM approach, the electronic structure of all homoleptic complexes
was probed, showing slightly more covalent bonding character in actinide–selenium
bonds over actinide–sulfur bonds
Insertion Reactions and Catalytic Hydrophosphination of Heterocumulenes using α‑Metalated <i>N</i>,<i>N</i>‑Dimethylbenzylamine Rare-Earth-Metal Complexes
The reactivity of homoleptic α-metalated dimethylbenzylamine
lanthanide complexes (α<i>-</i>LnÂ(DMBA)<sub>3</sub>; Ln = La, Y; DMBA = α-deprotonated dimethylbenzylamine) was
probed through a series of stoichiometric insertion and catalytic
hydrophosphination reactions. Both rare-earth-metal species inserted
3 equiv of various carbodiimides to form the corresponding homoleptic
amidinates. α<i>-</i>LaÂ(DMBA)<sub>3</sub> was also
found to be a useful precatalyst for the room-temperature hydrophosphination
of heterocumulenes to form phosphaguanidines, phosphaureas, and phosphathioureas
in moderate to excellent isolated yields. Furthermore, through a series
of stepwise stoichiometric protonation and insertion reactions, a
plausible mechanism for the hydrophosphination catalysis was investigated