651 research outputs found

    Persuasive Design in Teaching and Learning

    Get PDF
    The EuroPLOT project (2010-2013) has developed Persuasive Learning and Technologies (PLOTs) and has evaluated them in four real-world case studies, which cover the widely different teaching scenarios of university education, adult learning in industry, informal learning at a museum, literature studies, and language learning. At the International Workshop of EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013), the results of the project were presented, and an overview of related research was given. One of the main conclusions of EuroPLOT has been that the specific learning context has to be considered when applying persuasive designs. At IWEPLET 2013, both the theoretical background as well as evaluations of persuasive technology demonstrations were presented. This paper provides an overview of these presentations

    Experimental Measures of Affine and Non-affine Deformation in Granular Shear

    Full text link
    Through 2D granular Couette flow experiments, we probe failure and deformation of disordered solids under shear. Shear produces smooth affine deformations in such a solid and also irresversible so-called non-affine particle displacements. We examine both processes. We show that the non-affine part is associated with diffusion, and also can be used to define a granular temperature. Distributions for single particle non-affine displacements, \dri, satisfy P_1(\dri) \propto \exp [-|\dri/\Delta r|^{\alpha}] (α<2\alpha \stackrel{<}{\sim} 2). We suggest that the shear band forms due to a radially outward diffusive flux/non-affine motion which is balanced in the steady state by inward diffusion due to density gradients.Comment: 4 pages, 5 figure

    Fluctuations in Shear-Jammed States: A Statistical Ensemble Approach

    Full text link
    Granular matter exists out of thermal equilibrium, i.e. it is athermal. While conventional equilibrium statistical mechanics is not useful for characterizing granular materials, the idea of constructing a statistical ensemble analogous to its equilibrium counterpart to describe static granular matter was proposed by Edwards and Oakshott more than two decades ago. Recent years have seen several implementations of this idea. One of these is the stress ensemble, which is based on properties of the force moment tensor, and applies to frictional and frictionless grains. We demonstrate the full utility of this statistical framework in shear jammed (SJ) experimental states [1,2], a special class of granular solids created by pure shear, which is a strictly non-equilbrium protocol for creating solids. We demonstrate that the stress ensemble provides an excellent quantitative description of fluctuations in experimental SJ states. We show that the stress fluctuations are controlled by a single tensorial quantity: the angoricity of the system, which is a direct analog of the thermodynamic temperature. SJ states exhibit significant correlations in local stresses and are thus inherently different from density-driven, isotropically jammed (IJ) states.Comment: 6 pages, 4 figure

    The Virtual Runner Learning Game

    Get PDF
    A learning game has been developed which allows learners to study and learn about the significance of three important variables in human physiology (lactate, glycogen, and hydration) and their influence on sports performance during running. The player can control the speed of the runner, and as a consequence the resulting physiological processes are simulated in real-time. The performance degradation of the runner due to these processes requires that different strategies for pacing the running speed are applied by the player, depending on the total length of the run. The game has been positively evaluated in a real learning context of academic physiology teaching
    corecore