10 research outputs found

    Animal models for tracheal research.

    No full text
    Item does not contain fulltextTracheal research covers two main areas of interest: tracheal reconstruction and tracheal fixation. Tracheal reconstructions are aimed at rearranging or replacing parts of the tracheal tissue using implantation and transplantation techniques. The indications for tracheal reconstruction are numerous: obstructing tracheal tumors, trauma, post-intubation tissue reactions, etc. Although in the past years much progress has been made, none of the new developed techniques have resulted in clinical application at large scale. Tissue engineering is believed to be the technique to provide a solution for reconstruction of tracheal defects. Although developing functional tracheal tissue from different cultured cell types is still a challenge. Tracheal fixation research is relatively new in the field and concentrates on solving fixation-related problems for laryngectomized patients. In prosthetic voice rehabilitation tracheo-esophageal silicon rubber speech valves and tracheostoma valves are used. This is often accompanied by many complications. The animal models used for tracheal research vary widely and in most publications proper scientific arguments for animal selection are never mentioned. It showed that the choice on animal models is a multi-factorial process in which non-scientific arguments tend to play a key role. The aim of this study is to provide biomaterials scientists with information about tracheal research and the animal models used

    Ultrasonic force microscopies

    No full text
    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as “mechanical diode” detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artefacts connected with these effects. This is complemented by another extremely useful feature of UFM ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyses the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as describes related sample preparation methods on the example of subsurface imaging of nanostructures and iii–v quantum dots

    Der Akademismus in der deutschen Musik des 19. Jahrhunderts

    No full text

    Promising Strategies for the Mineralisation of 2,4,6-trinitrotoluene

    No full text
    corecore