146 research outputs found

    Effect of thermomechanical processing defects on fatigue and fracture behaviour of forged magnesium

    Get PDF
    The microstructural origins of premature fatigue failures were investigated on a variety of forged components manufactured from AZ80 and ZK60 magnesium, both at the test specimen level and the full-scale component level. Both stress and strain-controlled approaches were used to characterize the macroscopically defect-free forged material behaviour as well as with varying levels of defect intensities. The effect of thermomechanical processing defects due to forging of a industrially relevant full-scale component were characterized and quantified using a variety of techniques. The fracture initiation and early crack growth behaviour was deterministically traced back to a combination of various effects having both geometric and microstructural origins, including poor fusion during forging, entrainment of contaminants sub-surface, as well as other inhomogeneities in the thermomechanical processing history.             At the test specimen level, the fracture behaviour under both stress and strain controlled uniaxial loading was characterized for forged AZ80 Mg and a structure-property relationship was developed. The fracture surface morphology was quantitatively assessed revealing key features which characterize the presence and severity of intrinsic forging defects.  A significant degradation in fatigue performance was observed as a result of forging defects accelerating fracture initiation and early crack growth, up to 6 times reduction in life (relative to the defect free material) under constant amplitude fully reversed fatigue loading.             At the full-scale component level, the fatigue and fracture behaviour under combined structural loading was also characterized for a number of ZK60 forged components with varying levels of intrinsic thermomechanical processing defects. A novel in-situ non-contact approach (utilizing Digital-Image Correlation) was used as a screening test to establish the presence of these intrinsic defects and reliably predict their effect on the final fracture behaviour in an accelerated manner compared to conventional methods

    Status of Advanced UT Systems for the Nuclear Industry

    Get PDF
    An advanced ultrasonic testing (UT) system is a configuration of hardware that includes some type of computer. The computer may be hardwired to perform specific functions or have appropriate software. It may typically be used for data acquisition, signal processing, image generation, pattern recognition and data analysis. Additionally, advanced systems have data storage and are, therefore, different from the standard transducer-pulser/receiver systems that rely on human filtering and written documentation of the filtered data.</p

    Fatigue characteristics and modeling of cast and cast-forged ZK60 magnesium alloy

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ijfatigue.2018.03.019 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The fatigue behavior of as-cast and cast-forged ZK60 magnesium alloy was investigated via fully-reversed strain controlled fatigue tests at different strain amplitudes. Microstructure analysis, texture measurement, and SEM fracture surface characterization were performed to discern the reason of fatigue behavior improvement via forging, and also to explain the mechanism underlying crack initiation in both cast and cast-forged conditions. It was perceived that the forged alloy contains less amount of porosities and second phase particles in its microstructure. In general, the forged alloy showed longer fatigue life for all strain amplitudes, especially when the strain amplitude is lower than 0.4%. The forging process increased the fatigue strength at 107 cycles from 0.175% to 0.22% strain amplitude. The microstructure obtained after fatigue test showed that twinning can be activated in the cast-forged alloy, once strain amplitude is higher than 0.4%. The interaction of twin bands with the grain boundaries can also adversely affect the fatigue life of the forged alloy. Also, the residual twins can develop tensile mean stress which affects the fatigue life negatively. Finally, the Coffin-Manson fatigue model and an energy-based fatigue model were employed to model the life of as-cast and cast-forged materials. While some of the predicted lives by the former were out of the ±2× boundary bounds, the latter’s results were tightly clustered in ±1.5× bounds.Natural Sciences and Engineering Research Council of CanadaAutomotive Partnership Canada ["APCPJ 459269-13"

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    Anisotropy in the quasi-static and cyclic behavior of ZK60 extrusion: Characterization and fatigue modeling

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.matdes.2018.10.026 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The quasi-static and strain-controlled fatigue characteristics of ZK60 extrusion have been investigated along three different directions: the extrusion direction (ED), the radial direction (RD), and 45° to the extrusion direction (45°). The quasi-static response showed symmetric behavior for the samples tested along RD and 45°, whereas the ED samples manifested completely asymmetric behavior. Although the ED samples exhibited longer fatigue lives than the RD and 45° in the high cycle fatigue, the fatigue lives in the low cycle fatigue regime were similar. The texture measurement indicated a sharp basal texture along ED, explaining its asymmetric behavior. Higher tensile mean stress and less dissipated plastic energy per cycle for the ED samples, acting as two competing factors, were the principal reasons for exhibiting fatigue responses identical to those of RD and 45° in the LCF regime. The fracture surface in the ED direction was dominated by twin lamellae and profuse twinned grains, whereas that in RD was dominated by slip bands. Finally, Smith-Watson-Topper and Jahed-Varvani models were employed to predict the fatigue lives along all directions using a single set of material parameters.Natural Sciences and Engineering Research Council of CanadaAssociation for Progressive Communications ["459269–13"

    National Outbreak of Salmonella Serotype Saintpaul Infections: Importance of Texas Restaurant Investigations in Implicating Jalapeño Peppers

    Get PDF
    BACKGROUND: In May 2008, PulseNet detected a multistate outbreak of Salmonella enterica serotype Saintpaul infections. Initial investigations identified an epidemiologic association between illness and consumption of raw tomatoes, yet cases continued. In mid-June, we investigated two clusters of outbreak strain infections in Texas among patrons of Restaurant A and two establishments of Restaurant Chain B to determine the outbreak's source. METHODOLOGY/PRINCIPAL FINDINGS: We conducted independent case-control studies of Restaurant A and B patrons. Patients were matched to well controls by meal date. We conducted restaurant environmental investigations and traced the origin of implicated products. Forty-seven case-patients and 40 controls were enrolled in the Restaurant A study. Thirty case-patients and 31 controls were enrolled in the Restaurant Chain B study. In both studies, illness was independently associated with only one menu item, fresh salsa (Restaurant A: matched odds ratio [mOR], 37; 95% confidence interval [CI], 7.2-386; Restaurant B: mOR, 13; 95% CI 1.3-infinity). The only ingredient in common between the two salsas was raw jalapeño peppers. Cultures of jalapeño peppers collected from an importer that supplied Restaurant Chain B and serrano peppers and irrigation water from a Mexican farm that supplied that importer with jalapeño and serrano peppers grew the outbreak strain. CONCLUSIONS/SIGNIFICANCE: Jalapeño peppers, contaminated before arrival at the restaurants and served in uncooked fresh salsas, were the source of these infections. Our investigations, critical in understanding the broader multistate outbreak, exemplify an effective approach to investigating large foodborne outbreaks. Additional measures are needed to reduce produce contamination

    Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel

    Get PDF
    Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multicentre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients’ (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16–22) and failed intubation in 1 in 312 (95%CI 1 in 169–667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)
    • …
    corecore