5 research outputs found

    Attitudes among Parents towards Return of Disease-Related Polygenic Risk Scores (PRS) for Their Children

    No full text
    The electronic MEdical Records and GEnomics (eMERGE) consortium will return risk reports pertaining to specific diseases, a key component of which will be polygenic risk scores (PRS), to 25,000 participants, including 5000 children. Understanding comprehension and the perceived value of these PRS-based reports among parents will be critical for effective return of results in children. To address this issue, we conducted semi-structured interviews with 40 African American and Hispanic parents at The Children’s Hospital of Philadelphia and Boston Children’s Hospital. Each participant received a hypothetical risk report identifying their child as high risk for either type 2 diabetes or asthma. Participants were assessed on their comprehension of absolute versus relative risk framing, likelihood of following risk-reduction recommendations, perceived value of the information, psychosocial impact, education/support needed, and suggestions to improve the PRS-based report to make it more accessible. Results demonstrated high perceived value in receiving PRS-based reports but also draws attention to important shortfalls in comprehension due to factors including the health of the child, family history, and how the risk was framed. This study provides an insight into implementing the return of genomic risk scores in a pediatric setting

    Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations

    No full text
    Copy number variants (CNVs) are suggested to have a widespread impact on the human genome and phenotypes. To understand the role of CNVs across human diseases, we examine the CNV genomic landscape of 100,028 unrelated individuals of European ancestry, using SNP and CGH array datasets. We observe an average CNV burden of ~650 kb, identifying a total of 11,314 deletion, 5625 duplication, and 2746 homozygous deletion CNV regions (CNVRs). In all, 13.7% are unreported, 58.6% overlap with at least one gene, and 32.8% interrupt coding exons. These CNVRs are significantly more likely to overlap OMIM genes (2.94-fold), GWAS loci (1.52-fold), and non-coding RNAs (1.44-fold), compared with random distribution (P < 1 × 10-3). We uncover CNV associations with four major disease categories, including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric diseases, and identify several drug-repurposing opportunities. Our results demonstrate robust frequency definition for large-scale rare variant association studies, identify CNVs associated with major disease categories, and illustrate the pleiotropic impact of CNVs in human disease
    corecore