7 research outputs found

    Weak ferromagnetism and spin reorientation in antiferroelectric BiCrO3

    Get PDF
    BiCrO3 is an antiferroelectric perovskite known to exhibit an unconventional spin reorientation transition between antiferromagnetic structures, accompanied by a large jump in weak ferromagnetism. Using a combination of neutron powder diffraction, magnetometry, and symmetry analysis, we confirm the dominant G-type antiferromagnetic order below TN = 111 K and identify the magnetic phase transition with a spontaneous rotation of Cr3+ moments from the b axis to a particular direction in the ac plane. We demonstrate the role of antiferroelectric displacements produced by the Bi3+ lone-pair electrons and octahedral rotations in establishing spin canting via the antisymmetric Dzyaloshinskii-Moriya interaction. This mechanism results in weak ferromagnetism above and below the spin-reorientation and explains the dramatic increase in net magnetization on cooling

    Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes

    Get PDF
    Elevated rates of mating and reproduction cause decreased female survival and lifetime reproductive success across a wide range of taxa from flies to humans. These costs are fundamentally important to the evolution of life histories. Here we investigate the potential mechanistic basis of this classic life history component. We conducted 4 independent replicated experiments in which female Drosophila melanogaster were subjected to 'high' and 'low' mating regimes, resulting in highly significant differences in lifespan. We sampled females for transcriptomic analysis at day 10 of life, before the visible onset of ageing, and used Tiling expression arrays to detect differential gene expression in two body parts (abdomen versus head+thorax). The divergent mating regimes were associated with significant differential expression in a network of genes showing evidence for interactions with ecdysone receptor. Preliminary experimental manipulation of two genes in that network with roles in post-transcriptional modification (CG11486, eyegone) tended to enhance sensitivity to mating costs. However, the subtle nature of those effects suggests substantial functional redundancy or parallelism in this gene network, which could buffer females against excessive responses. There was also evidence for differential expression in genes involved in germline maintenance, cell proliferation and in gustation/ odorant reception. Interestingly, we detected differential expression in three specific genes (EcR, keap1, lbk1) and one class of genes (gustation/ odorant receptors) with previously reported roles in determining lifespan. Our results suggest that high and low mating regimes that lead to divergence in lifespan are associated with changes in the expression of genes such as reproductive hormones, that influence resource allocation to the germ line, and that may modify post-translational gene expression. This predicts that the correct signalling of nutrient levels to the reproductive system is important for maintaining organismal integrity

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton–proton collisions at 8 TeV

    No full text

    Angular coefficients of Z bosons produced in pp collisions at s\sqrt{s} = 8 TeV and decaying to μ+μ\mu^+ \mu^- as a function of transverse momentum and rapidity

    No full text

    Angular coefficients of Z bosons produced in pp collisions at s\sqrt{s} = 8 TeV and decaying to μ+μ\mu^+ \mu^- as a function of transverse momentum and rapidity

    No full text
    corecore