552 research outputs found

    Measuring thermal conductivity in extreme conditions: sub-Kelvin temperatures and high (27 T) magnetic fields

    Full text link
    We present a one-heater-two-thermometer set-up for measuring thermal conductivity and electric resistivity of a bulk sample at low temperatures down to 0.1 K and in magnetic fields up to 27 Tesla. The design overcomes the difficulties emerging in the context of large water-cooled resistive magnets.Comment: 4 pages including 4 figure

    Thermodynamic evidence for valley-dependent density of states in bulk bismuth

    Full text link
    Electron-like carriers in bismuth are described by the Dirac Hamiltonian, with a band mass becoming a thousandth of the bare electron mass along one crystalline axis. The existence of three anisotropic valleys offers electrons an additional degree of freedom, a subject of recent attention. Here, we map the Landau spectrum by angle-resolved magnetostriction, and quantify the carrier number in each valley: while the electron valleys keep identical spectra, they substantially differ in their density of states at the Fermi level. Thus, the electron fluid does not keep the rotational symmetry of the lattice at low temperature and high magnetic field, even in the absence of internal strain. This effect, reminiscent of the Coulomb pseudo-gap in localized electronic states, affects only electrons in the immediate vicinity of the Fermi level. It presents the most striking departure from the non-interacting picture of electrons in bulk bismuth.Comment: 6 pages, 3 Figure

    The Nernst effect and the boundaries of the Fermi liquid picture

    Full text link
    Following the observation of an anomalous Nernst signal in cuprates, the Nernst effect was explored in a variety of metals and superconductors during the past few years. This paper reviews the results obtained during this exploration, focusing on the Nernst response of normal quasi-particles as opposed to the one generated by superconducting vortices or by short-lived Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer cancelation does not imply a negligible Nernst response in a Fermi liquid. In fact, the amplitude of the Nernst response measured in various metals in the low-temperature limit is scattered over six orders of magnitude. According to the data, this amplitude is roughly set by the ratio of electron mobility to Fermi energy in agreement with the implications of the semi-classical transport theory.Comment: Final version, Topical review for JPC

    Sub-Filter Scale Models for Scalar Transport in Large Eddy Simulations

    Get PDF
    Large eddy simulation (LES) of turbulent heat transfer in an in- nite channel has been used to compare the performance of several promising sub-lter-scale models for modelling the transport of a passive scalar. The dynamic mixed model and the dynamic reconstruction model (a higher order version of the mixed model) have been reported in the literature to perform very well in LES of turbulent ow. Here these models are tested to determine the model's suitability for modelling transport of a passive scalar. These models together with the dynamic Smagorinsky model and a no-model case, are tested at a Prandtl number of 0.71 and Reynolds number of 180 based on wall friction velocity and channel half width. Both the dynamic reconstruction model and the dynamic mixed model perform very well showing clear improvement in the prediction of the mean ow and other turbulent statistics compared to the no-model case. The standard dynamic Smagorinsky model without the additional reconstruction terms performs quite poorly
    • …
    corecore