636 research outputs found

    The Nernst effect and the boundaries of the Fermi liquid picture

    Full text link
    Following the observation of an anomalous Nernst signal in cuprates, the Nernst effect was explored in a variety of metals and superconductors during the past few years. This paper reviews the results obtained during this exploration, focusing on the Nernst response of normal quasi-particles as opposed to the one generated by superconducting vortices or by short-lived Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer cancelation does not imply a negligible Nernst response in a Fermi liquid. In fact, the amplitude of the Nernst response measured in various metals in the low-temperature limit is scattered over six orders of magnitude. According to the data, this amplitude is roughly set by the ratio of electron mobility to Fermi energy in agreement with the implications of the semi-classical transport theory.Comment: Final version, Topical review for JPC

    Oscillating Nernst-Ettingshausen effect in Bismuth across the quantum limit

    Get PDF
    In elemental Bismuth, 105^5 atoms share a single itinerant electron. Therefore, a moderate magnetic field can confine electrons to the lowest Landau level. We report on the first study of metallic thermoelectricity in this regime. The main thermoelectric response is off-diagonal with an oscillating component several times larger than the non-oscillating background. When the first Landau level attains the Fermi Energy, both the Nernst and the Ettingshausen coefficients sharply peak, and the latter attains a temperature-independent maximum. A qualitative agreement with a theory invoking current-carrying edge excitations is observed.Comment: Final published versio

    Nernst effect in the phase-fluctuating superconductor InOx_x

    Full text link
    We present a study of the Nernst effect in amorphous 2D superconductor InOx_x, whose low carrier density implies low phase rigidity and strong superconducting phase fluctuations. Instead of presenting the abrupt jump expected at a BCS transition, the Nernst signal evolves continuously through the superconducting transition as previously observed in underdoped cuprates. This contrasts with the case of Nb0.15_{0.15}Si0.85_{0.85}, where the Nernst signal due to vortices below Tc_{c} and by Gaussian fluctuations above are clearly distinct. The behavior of the ghost critical field in InOx_x points to a correlation length which does not diverge at TcT_c, a temperature below which the amplitude fluctuations freeze, but phase fluctuations survive.Comment: 4 pages, 4 figure

    Thermoelectric response of Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4}: evidence for strong correlation and low carrier density

    Full text link
    We present a study of the Seebeck and Nernst coefficients of Fe1+y_{1+y}Te1x_{1-x}Sex_{x} extended up to 28 T. The large magnitude of the Seebeck coefficient in the optimally doped sample tracks a remarkably low normalized Fermi temperature, which, like other correlated superconductors, is only one order of magnitude larger than Tc_c. We combine our data with other experimentally measured coefficients of the system to extract a set of self-consistent parameters, which identify Fe1+y_{1+y}Te0.6_{0.6}Se0.4_{0.4} as a low-density correlated superconductor barely in the clean limit. The system is subject to strong superconducting fluctuations with a sizeable vortex Nernst signal in a wide temperature window.Comment: 4 pages including 4 figure

    Applications of tripled chaotic maps in cryptography

    Full text link
    Security of information has become a major issue during the last decades. New algorithms based on chaotic maps were suggested for protection of different types of multimedia data, especially digital images and videos in this period. However, many of them fundamentally were flawed by a lack of robustness and security. For getting higher security and higher complexity, in the current paper, we introduce a new kind of symmetric key block cipher algorithm that is based on \emph{tripled chaotic maps}. In this algorithm, the utilization of two coupling parameters, as well as the increased complexity of the cryptosystem, make a contribution to the development of cryptosystem with higher security. In order to increase the security of the proposed algorithm, the size of key space and the computational complexity of the coupling parameters should be increased as well. Both the theoretical and experimental results state that the proposed algorithm has many capabilities such as acceptable speed and complexity in the algorithm due to the existence of two coupling parameter and high security. Note that the ciphertext has a flat distribution and has the same size as the plaintext. Therefore, it is suitable for practical use in secure communications.Comment: 21 pages, 10 figure

    Magnetic field-induced quantum superconductor-insulator transition in Nb0.15Si0.85Nb_{0.15}Si_{0.85}

    Full text link
    A study of magnetic-field tuned superconductor-insulator transitions in amorphous Nb0.15Si0.85Nb_{0.15}Si_{0.85} thin films shows that quantum superconductor-insulator transitions are characterized by an unambiguous signature -- a kink in the temperature profile of the critical magnetic field. Using this criterion, we show that the nature of the magnetic-field tuned superconductor-insulator transition depends on the orientation of the field with respect to the film. For perpendicular magnetic field, the transition is controlled by quantum fluctuations with indications for the existence of a Bose insulator; while for parallel magnetic field, the transition is classical, driven by the breaking of Cooper pairs at the temperature dependent critical field Hc2H_{c2}.Comment: 5 pages, 4 figure
    corecore