66 research outputs found
Differential factor binding at the promoter of early baculovirus gene PE38 during viral infection: GATA motif is recognized by an insect protein
Regulatory elements interacting with DNA-binding proteins have been investigated in the promoter sequence of the early PE38 gene in the Autographa californica nuclear polyhedrosis virus (AcNPV). A GATA motif located 50 nucleotides upstream of the PE38 transcriptional start site is recognized differentially in the course of infection. As demonstrated by footprint and gel mobility shift assays, the GATA sequences TTATCT are protected by nuclear extracts from uninfected Spodoptera frugiperda cells and from S. frugiperda cells early postinfection (p.i.) but not by S. frugiperda cell extracts isolated 40 h p.i. We have compared the binding capacity of the insect GATA-like protein with that of the vertebrate GATA-1 factor identified as erythroid-specific factor. Our results indicate that a factor present in mouse erythroleukemia cells, presumably GATA-1, can bind to the insect GATA motif and vice versa. Evidence from transient expression studies suggests that the mutated GATA sequences do not influence PE38 promoter activity in cell culture.</jats:p
The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation
AbstractBackground: A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter switch contains two phosphorylation sites – one on a ‘turn’ motif and the second on a conserved hydrophobic phosphorylation motif – that are found separately or together in a number of other kinases.Results: Here, we investigated whether the carboxy-terminal phosphorylation sites of a conventional PKC are controlled by autophosphorylation or by another kinase. First, kinetic analyses revealed that a purified construct of the kinase domain of PKC βII autophosphorylated on the Ser660 residue of the hydrophobic phosphorylation motif in an apparently concentration-independent manner. Second, kinase-inactive mutants of PKC did not incorporate phosphate at either of the carboxy-terminal sites, Thr641 or Ser660, when expressed in COS-7 cells. The inability to incorporate phosphate on the hydrophobic site was unrelated to the phosphorylation state of the other key phosphorylation sites: kinase-inactive mutants with negative charge at Thr641 and/or the activation-loop position were also not phosphorylated in vivo.Conclusions: PKC βII autophosphorylates at its conserved carboxy-terminal hydrophobic phosphorylation site by an apparently intramolecular mechanism. Expression studies with kinase-inactive mutants revealed that this mechanism is the only one responsible for phosphorylating this motif in vivo. Thus, conventional PKC autoregulates the carboxy-terminal phosphorylation switch following phosphorylation by another kinase at the activation loop switch
Purification of Nuclear Proteins from Human HeLa Cells That Bind Specifically to the Unstable Tandem Repeat (CGG)n in the Human FMR1 Gene
Triplet repeat sequences in human DNA can be detected by hybridization to a synthetic (5'-CGG-3')17 oligodeoxyribonucleotideag]
AbstractThe seemingly autonomous amplification of naturally occurring triplet repeat sequences in the human genome has been implicated in the causation of human genetic disease, such as the fragile X (Martin-Bell) syndrome, myotonic dystrophy (Curshmann-Steinert), spinal and bulbar muscular atrophy (Kennedy's disease) and Huntington's disease. The molecular mechanisms underlying these triplet amplifications are still unknown. We demonstrate here that a synthetic (CGG)17 oligodeoxyribonucleotide can be utilized as hybridization probe to visualize some of the triplet repeats in the human genome. This technique may help in studies aimed at the elucidation of the amplification mechanism
Eukaryotic DNA methylation: facts and problems
AbstractPatterns of DNA methylation in complex genomes like those of mammalian cells have been viewed as indicators of different levels of genetic activities. It is as yet unknown how these complicated patterns are generated and maintained during cell replication. There is evidence from many different biological systems that the sequence-specific methylation of promoters in higher eukaryotes is one of the important factors in controlling gene activity at a long-term level. In general, the fifth nucleotide 5-methyldeoxycytidine can be considered as a modulator of protein-DNA interactions. The degree and direction of this modulation has to be assessed experimentally in each individual instance. The establishment of de novo patterns of DNA methylation is characterized by the gradual non-random spreading of DNA methylation by an essentially unknown mechanism. In this review, some of the general concepts of DNA methylation in mammalian systems are presented, and research currently performed in the authors' laboratory has been summarized
Purification of Nuclear Proteins from Human HeLa Cells That Bind Specifically to the Unstable Tandem Repeat (CGG)n in the Human FMR1 Gene
- …
