19 research outputs found

    Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against Agrotis ipsilon (Lepidoptera: Noctuidae)

    Get PDF
    Pyrolysis technology for producing biochar and bio-oils can be used as a potential alternative to make biopesticides, which are urgently needed in integrated pest management (IPM). Insecticidal activity of three components of bio-oils: aqueous, organic and their mixture, was evaluated individually and with three different entomopathogens: the baculovirus Agrotis ipsilon nucleopolyhedrovirus (AgipMNPV), bacterium Bacillus thuringensis var. kurstaki (Bt) and fungus Beauveria bassiana (Bb) against black cutworm, Agrotis ipsilon (Hufnagel). The effect of alkaline conditions of spray-dried biochar was studied simultaneously with the microbial pathogens. Our bioassay results indicated that the organic bio-oil phase was the most active, causing 100% mortality after 24 h, when the median lethal toxicity values LC50s (mg/ml) were found. However, the bio-oil fractions applied alone tended to cause higher mortality of the exposed larvae than did either mix with the microbial agents. Also, the results revealed that maximum mortalities were found in spray-dried formulations made with biochar at pH 7.1. It was concluded that pyrolysis oils are effective insecticides, and biochar could be a useful additive in production and formulation of biopesticides. This interesting finding further promotes the use of pyrolysis bio-oils and biochar compounds as eco-friendly alternatives to replace conventional pesticides

    Active and covert infections of cricket Iridovirus and Acheta domesticus Densovirus in reared Gryllodes sigillatus crickets

    Get PDF
    Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity

    A new race of dusky grouse (Dendragapus obscunis) from the Great Basin

    No full text
    Volume: 64Start Page: 125End Page: 12

    Repellency of a Wax-Based Catnip-Oil Formulation against Stable Flies

    Get PDF
    Stable flies, Stomoxys calcitrans (L.), are one of the most serious livestock pests, which cause significant economic loss in the cattle industry. Current practices for managing stable flies are limited to costly sanitation techniques and unsustainable insecticide applications. The present study reports the initial efforts using catnip essential oil as a spatial repellent and the results of field trials using a wax-based formulation to repel stable flies in the cattle feedlot. Electroantennograms showed that catnip oil and its ingredient compounds elicit significant antennal responses from both sexes of stable flies. Catnip oil and ZE- and EZ-nepetalactone showed repellent activity in a single cage olfactormeter study. No behavioral activity was observed from another ingredient compound, caryophyllene. A laboratory dispersal bioassay also showed that stable flies avoided areas treated with catnip oil. Using a solid phase microextraction (SPME) method, the atmospheric concentration of catnip active ingredient compounds (nepetalactones) absorbed by SPME fiber in treated areas was detected at 4 times higher than those in control areas. Application of wax-based catnip pellets in cattle feedlots resulted in \u3e99% repellency of stable flies in treated areas, compared with that in nontreated areas. However, the repellent efficacy of the formulation only lasted 3 h. This is the first study demonstrating the potential application of a plant-based repellent formulation that may be used as an alternative method against stable flies

    Evaluation of a Lignin-Encapsulated Nootkatone Formulation Against Tetranychus urticae (Acari: Tetranychidae)

    Get PDF
    Botanical-based miticides, such as neem oil, are used in organic and conventional agronomic production as part of chemical rotation plans to suppress pest mite populations. Other plant-based compounds such as nootkatone (a component of essential oils distilled from grapefruit, Citrus paradisi Macfayden (Rutaceae), and Alaskan yellow cedar, Chamaecyparis nootkatensis [D. Don] Spach [Cupressaceae]), also may serve as effective organic miticides in crop production systems. We report on a lignin-encapsulated (LE) nootkatone formulation (previously effective at repelling ticks) that was evaluated as a miticide against the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). At an application rate of 1 g/L AI, LE nootkatone caused 85% mortality of spider mites in the absence of silk webbing, but only 12% mortality when webbing was present. Another component of Alaskan yellow cedar oil, carvacrol, was added at a rate of 1 ml/L to the LE formulation. Spider mite mortality to this formulation, with webbing present, increased to 81%. Although the LE nootkatone and carvacrol combination exhibited phytotoxicity, it does have potential as a miticide. However, more work is needed to reduce the phytotoxicity of current formulations

    Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of <i>Trichoplusia ni</i> Larvae against Fungal Entomopathogenic Infections

    No full text
    The cabbage looper Trichoplusia ni is an important agricultural pest worldwide and is frequently used as a model organism for assessing entomopathogenic fungi virulence, though few studies have measured the host response repertoire to fungal biocontrol agents. Here, we quantified the immune response of T. ni larvae following exposure to two entomopathogenic fungal species: Beauveria bassiana and Cordyceps javanica. Results from our study demonstrate that T. ni larvae exposed to fungal entomopathogens had higher total phenoloxidase activity compared to controls, indicating that the melanization cascade is one of the main immune components driving defense against fungal infection and contrasting observations from other insect–fungi interaction studies. We also observed differences in host response depending on the species of entomopathogenic fungi, with significantly higher induction observed during infections with B. bassiana than with C. javanica. Larvae exposed to B. bassiana had an increased expression of genes involved in prophenoloxidase response and the Imd, JNK, and Jak/STAT immune signaling pathways. Our results indicate a notable absence of Toll pathway-related responses, further contrasting results to other insect–fungi pathosystems. Important differences were also observed in the induction of antimicrobial effectors, with B. bassiana infections eliciting three antimicrobial effectors (lysozyme, gloverin, and cecropin), while C. javanica only induced cecropin expression. These results provide insight into the host response strategies employed by T. ni for protection against entomopathogenic fungi and increase our understanding of insect–fungal entomopathogen interactions, aiding in the design of more effective microbial control strategies for this important agricultural pest

    Environmental Tolerance of Entomopathogenic Fungi: A New Strain of Cordyceps javanica Isolated from a Whitefly Epizootic Versus Commercial Fungal Strains

    No full text
    A new strain of Cordyceps javanica (wf GA17) was observed causing widespread epizootics among whiteflies in Southern Georgia in 2017. The tolerance of conidia to environmental factors including variable temperature and ultraviolet (UV) light was compared between this strain and three commercial strains of entomopathogenic fungi (Metarhizium brunneum F52, Cordyceps fumosorosea Apopka97, and Beauveria bassiana GHA). Under 10&ndash;30 &deg;C, C. javanica wf GA17 responded similarly to other fungi, with the highest virulence against Galleria mellonella at 25 &deg;C, followed by 20, 30, and 15 &deg;C; lowest virulence was observed at 10 &deg;C. At 35 &deg;C and 40 &deg;C, C. javanica wf GA17 had lower tolerance than M. brunneum F52 and B. bassiana GHA, but was superior to C. fumosorosea Apopka97 in conidia viability and post-treatment virulence. After exposure to &minus;20 &deg;C for 56 d, C. javanica wf GA17 exhibited lower germination than M. brunneum F52 and lower virulence than M. brunneum F52 and B. bassiana GHA, but higher germination and virulence than C. fumosorosea Apopka97. Following exposure to strong UV light, viability and virulence of all fungi were reduced with increasing exposure periods. Increased environmental tolerance of C. javanica wf GA17 over C. fumosorosea Apopka97 suggests that the new strain could have applicability for commercial pest management
    corecore