36 research outputs found

    Toe clearance when walking in people with unilateral transtibial amputation: Effects of passive hydraulic ankle

    Get PDF
    YesMost clinically available prosthetic feet have a rigid attachment or incorporate an “ankle” device allowing elastic articulation during stance, with the foot returning to a “neutral” position at toe-off. We investigated whether using a foot with a hydraulically controlled articulating ankle that allows the foot to be relatively dorsiflexed at toe-off and throughout swing would increase minimum toe clearance (MTC). Twenty-one people with unilateral transtibial amputation completed overground walking trials using their habitual prosthetic foot with rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment (hyA-F). MTC and other kinematic variables were assessed across multiple trials. When using the hyA-F, mean MTC increased on both limbs (p= 0.03). On the prosthetic limb this was partly due to the device being in its fully dorsiflexed position at toe-off, which reduced the “toes down” foot angle throughout swing (p = 0.01). Walking speed also increased when using the hyA-F (p = 0.001) and was associated with greater swing-limb hip flexion on the prosthetic side (p = 0.04), which may have contributed to the increase in mean MTC. Variability in MTC increased on the prosthetic side when using the hyA-F (p = 0.03), but this did not increase risk of tripping

    Allopurinol and cardiovascular outcomes in patients with ischaemic heart disease:the ALL-HEART RCT and economic evaluation

    Get PDF
    Background: Allopurinol is a xanthine oxidase inhibitor that lowers serum uric acid and is used to prevent acute gout flares in patients with gout. Observational and small interventional studies have suggested beneficial cardiovascular effects of allopurinol. Objective: To determine whether allopurinol improves major cardiovascular outcomes in patients with ischaemic heart disease. Design: Prospective, randomised, open-label, blinded endpoint multicentre clinical trial. Setting: Four hundred and twenty-four UK primary care practices. Participants: Aged 60 years and over with ischaemic heart disease but no gout. Interventions: Participants were randomised (1: 1) using a central web-based randomisation system to receive allopurinol up to 600 mg daily that was added to usual care or to continue usual care. Main outcome measures: The primary outcome was the composite of non-fatal myocardial infarction, non-fatal stroke or cardiovascular death. Secondary outcomes were non-fatal myocardial infarction, non-fatal stroke, cardiovascular death, all-cause mortality, hospitalisation for heart failure, hospitalisation for acute coronary syndrome, coronary revascularisation, hospitalisation for acute coronary syndrome or coronary revascularisation, all cardiovascular hospitalisations, quality of life and cost-effectiveness. The hazard ratio (allopurinol vs. usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis. Results: From 7 February 2014 to 2 October 2017, 5937 participants were enrolled and randomised to the allopurinol arm (n = 2979) or the usual care arm (n = 2958). A total of 5721 randomised participants (2853 allopurinol; 2868 usual care) were included in the modified intention-to-treat analysis population (mean age 72.0 years; 75.5% male). There was no difference between the allopurinol and usual care arms in the primary endpoint, 314 (11.0%) participants in the allopurinol arm (2.47 events per 100 patient-years) and 325 (11.3%) in the usual care arm (2.37 events per 100 patient-years), hazard ratio 1.04 (95% confidence interval 0.89 to 1.21); p = 0.65. Two hundred and eighty-eight (10.1%) participants in the allopurinol arm and 303 (10.6%) participants in the usual care arm died, hazard ratio 1.02 (95% confidence interval 0.87 to 1.20); p = 0.77. The pre-specified health economic analysis plan was to perform a ‘within trial’ cost-utility analysis if there was no statistically significant difference in the primary endpoint, so NHS costs and quality-adjusted life-years were estimated over a 5-year period. The difference in costs between treatment arms was +£115 higher for allopurinol (95% confidence interval £17 to £210) with no difference in quality-adjusted life-years (95% confidence interval −0.061 to +0.060). We conclude that there is no evidence that allopurinol used in line with the study protocol is cost-effective. Limitations: The results may not be generalisable to younger populations, other ethnic groups or patients with more acute ischaemic heart disease. One thousand six hundred and thirty-seven participants (57.4%) in the allopurinol arm withdrew from randomised treatment, but an on-treatment analysis gave similar results to the main analysis. Conclusions: The ALL-HEART study showed that treatment with allopurinol 600 mg daily did not improve cardiovascular outcomes compared to usual care in patients with ischaemic heart disease. We conclude that allopurinol should not be recommended for the secondary prevention of cardiovascular events in patients with ischaemic heart disease but no gout.</p

    Allopurinol and cardiovascular outcomes in patients with ischaemic heart disease : the ALL-HEART RCT and economic evaluation

    Get PDF
    Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 11/36/41) and is published in full in Health Technology Assessment; Vol. 28, No. 18. See the NIHR Funding and Awards website for further award information.Peer reviewe

    The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees

    Get PDF
    yesBackground: Minimum toe clearance is a critical gait event because it coincides with peak forward velocity of the swing foot, and thus, there is an increased risk of tripping and falling. Trans-tibial amputees have increased risk of tripping compared to able-bodied individuals. Assessment of toe clearance during gait is thus clinically relevant. In able-bodied gait, minimum toe clearance increases with faster walking speeds, and it is widely reported that there is synchronicity between when peak swing-foot velocity and minimum toe clearance occur. There are no such studies involving lower-limb amputees. Objectives: To determine the effects of walking speed on minimum toe clearance and on the temporal relationship between clearance and peak swing-foot velocity in unilateral trans-tibial amputees. Study design: Cross-sectional. Methods: A total of 10 trans-tibial participants walked at slow, customary and fast speeds. Minimum toe clearance and the timings of minimum toe clearance and peak swing-foot velocity were determined and compared between intact and prosthetic sides. Results: Minimum toe clearance was reduced on the prosthetic side and, unlike on the intact side, did not increase with walking speed increase. Peak swing-foot velocity consistently occurred (~0.014 s) after point of minimum toe clearance on both limbs across all walking speeds, but there was no significant difference in the toe–ground clearance between the two events. Conclusion: The absence of speed related increases in minimum toe clearance on the prosthetic side suggests that speed related modulation of toe clearance for an intact limb typically occurs at the swing-limb ankle. The temporal consistency between peak foot velocity and minimum toe clearance on each limb suggests that swing-phase inter-segmental coordination is unaffected by trans-tibial amputation. Clinical relevance The lack of increase in minimum toe clearance on the prosthetic side at higher walking speeds may potentially increase risk of tripping. Findings indicate that determining the instant of peak swing-foot velocity will also consistently identify when/where minimum toe clearance occurs

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    BACKGROUND: Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. METHODS: ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. FINDINGS: Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89-1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87-1·20], p=0·77). INTERPRETATION: In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. FUNDING: UK National Institute for Health and Care Research

    Allopurinol and cardiovascular outcomes in patients with ischaemic heart disease: the ALL-HEART RCT and economic evaluation

    Get PDF
    Background: Allopurinol is a xanthine oxidase inhibitor that lowers serum uric acid and is used to prevent acute gout flares in patients with gout. Observational and small interventional studies have suggested beneficial cardiovascular effects of allopurinol. Objective: To determine whether allopurinol improves major cardiovascular outcomes in patients with ischaemic heart disease. Design: Prospective, randomised, open-label, blinded endpoint multicentre clinical trial. Setting: Four hundred and twenty-four UK primary care practices. Participants: Aged 60 years and over with ischaemic heart disease but no gout. Interventions: Participants were randomised (1 : 1) using a central web-based randomisation system to receive allopurinol up to 600 mg daily that was added to usual care or to continue usual care. Main Outcome Measures: The primary outcome was the composite of non-fatal myocardial infarction, non-fatal stroke or cardiovascular death. Secondary outcomes were non-fatal myocardial infarction, non-fatal stroke, cardiovascular death, all-cause mortality, hospitalisation for heart failure, hospitalisation for acute coronary syndrome, coronary revascularisation, hospitalisation for acute coronary syndrome or coronary revascularisation, all cardiovascular hospitalisations, quality of life and cost-effectiveness. The hazard ratio (allopurinol vs. usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis. Results: From 7 February 2014 to 2 October 2017, 5937 participants were enrolled and randomised to the allopurinol arm ( = 2979) or the usual care arm ( = 2958). A total of 5721 randomised participants (2853 allopurinol; 2868 usual care) were included in the modified intention-to-treat analysis population (mean age 72.0 years; 75.5% male). There was no difference between the allopurinol and usual care arms in the primary endpoint, 314 (11.0%) participants in the allopurinol arm (2.47 events per 100 patient-years) and 325 (11.3%) in the usual care arm (2.37 events per 100 patient-years), hazard ratio 1.04 (95% confidence interval 0.89 to 1.21); = 0.65. Two hundred and eighty-eight (10.1%) participants in the allopurinol arm and 303 (10.6%) participants in the usual care arm died, hazard ratio 1.02 (95% confidence interval 0.87 to 1.20); = 0.77. The pre-specified health economic analysis plan was to perform a 'within trial' cost-utility analysis if there was no statistically significant difference in the primary endpoint, so NHS costs and quality-adjusted life-years were estimated over a 5-year period. The difference in costs between treatment arms was +£115 higher for allopurinol (95% confidence interval £17 to £210) with no difference in quality-adjusted life-years (95% confidence interval -0.061 to +0.060). We conclude that there is no evidence that allopurinol used in line with the study protocol is cost-effective. Limitations: The results may not be generalisable to younger populations, other ethnic groups or patients with more acute ischaemic heart disease. One thousand six hundred and thirty-seven participants (57.4%) in the allopurinol arm withdrew from randomised treatment, but an on-treatment analysis gave similar results to the main analysis. Conclusions: The ALL-HEART study showed that treatment with allopurinol 600 mg daily did not improve cardiovascular outcomes compared to usual care in patients with ischaemic heart disease. We conclude that allopurinol should not be recommended for the secondary prevention of cardiovascular events in patients with ischaemic heart disease but no gout. Future Work: The effects of allopurinol on cardiovascular outcomes in patients with ischaemic heart disease and co-existing hyperuricaemia or clinical gout could be explored in future studies. Trial Registration: This trial is registered as EU Clinical Trials Register (EudraCT 2013-003559-39) and ISRCTN (ISRCTN 32017426)

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial.

    Get PDF
    Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89-1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87-1·20], p=0·77). In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. UK National Institute for Health and Care Research. [Abstract copyright: Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART) : a multicentre, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    Funding Information: ISM reports research grants from Menarini, EMA, Sanofi, Health Data Research UK, the British Heart Foundation, and Innovative Medicines Initiative; institutional consultancy income from AstraZeneca outside the submitted work; and personal income from AstraZeneca and Amgen outside the submitted work. TMM reports grants from Menarini/Ipsen/Teijin and Merck Sharp & Dohme outside the submitted work, and personal income for consultancy from Novartis and AstraZeneca outside the submitted work, and is a trustee of the Scottish Heart Arterial Risk Prevention Society. AGB reports personal income from Novartis, Mylan, AstraZeneca, Bayer, Daiichi-Sankyo, Boehringer, Pfizer, Galderma, Zambon, and Novo-Nordisk outside the submitted work. ADS and the University of Dundee hold a European patent for the use of xanthine oxidase inhibitors in treating chest pain in angina pectoris. AW declares personal income for consultancy from AbbVie, Akcea, Albireo, Alexion, Allergan, Amarin, Apsara, Arena, Astellas, AstraZeneca, Autolus, Bayer, Biocryst, Biogen, Biomarin, Bristol Myers Squibb, Boehringer Ingelheim, Calico, Celgene, Chiesi, Daiichi Sankyo, Diurnal, Elsai, Eli Lilly, Ferring, Galapagos, Gedeon Richter, Gilead, GlaxoSmithKline, GW Pharma, Idorsia, Incyte, Intercept, Ionis, Ipsen, Janssen, Jazz, Jcyte, Kite Gilead, LEK, Leo Pharma, Les Laboratoires Servier, Lundbeck, Merck (Merck Sharp & Dohme), Merck-Serono, Mitenyi, Mundibiopharma, Mustang Bio, Mylan, Myovant, Norgine, Novartis, Novo Nordisk, Orchard, Paion, Pfizer, Pierre Fabre, PTC, RegenXBio, Rhythm, Sanofi, Santen, Sarepta, SeaGen, Shionogi, Sigmatec, SOBI, Takeda, Tanaya, UCB, and Vertex outside the submitted work. JST declares research funding from the UK National Institute for Health and Care Research (NIHR) and NHS England outside the submitted work and membership of a UK National Institute for Health and Care Excellence guideline committee on management of atrial fibrillation. All other authors declare no competing interests. Funding Information: This study was funded by the NIHR Health Technology Assessment programme (HTA 11/36/41 to ISM, IF, CJH, LW, ADS, AGB, AJA, AW, JST, and TMM). The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care. The study was supported by the Scottish Primary Care Research Network, Support for Science Scotland (Grampian, Highlands, Tayside, Fife, Forth Valley, Greater Glasgow and Clyde, Lothian, Ayrshire and Arran, Dumfries and Galloway, and Lanarkshire), and the NIHR Local Clinical Research Networks (East Midlands, West Midlands, Eastern, North Thames, Yorkshire and Humber, North East and North Cumbria, North West Coast, Kent, Surrey and Sussex, and South West Peninsula), which assisted with recruitment and other study activities. We thank Public Health Scotland and NHS Digital for providing data linkage. We thank all the participants, physicians, nurses, and other staff who participated in the ALL-HEART study. Funding Information: This study was funded by the NIHR Health Technology Assessment programme (HTA 11/36/41 to ISM, IF, CJH, LW, ADS, AGB, AJA, AW, JST, and TMM). The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care. The study was supported by the Scottish Primary Care Research Network, Support for Science Scotland (Grampian, Highlands, Tayside, Fife, Forth Valley, Greater Glasgow and Clyde, Lothian, Ayrshire and Arran, Dumfries and Galloway, and Lanarkshire), and the NIHR Local Clinical Research Networks (East Midlands, West Midlands, Eastern, North Thames, Yorkshire and Humber, North East and North Cumbria, North West Coast, Kent, Surrey and Sussex, and South West Peninsula), which assisted with recruitment and other study activities. We thank Public Health Scotland and NHS Digital for providing data linkage. We thank all the participants, physicians, nurses, and other staff who participated in the ALL-HEART study. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licensePeer reviewedPublisher PD

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    BACKGROUND: Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. METHODS: ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. FINDINGS: Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89–1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87–1·20], p=0·77). INTERPRETATION: In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. FUNDING: UK National Institute for Health and Care Research

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link
    corecore