13 research outputs found

    Antiproliferative and Apoptotic Effects of Proteins from Black Seeds (\u3cem\u3eNigella sativa\u3c/em\u3e) on Human Breast MCF-7 Cancer Cell Line

    Get PDF
    Background Nigella sativa (NS), a member of family Ranunculaceae is commonly known as black seed or kalonji. It has been well studied for its therapeutic role in various diseases, particularly cancer. Literature is full of bioactive compounds from NS seed. However, fewer studies have been reported on the pharmacological activity of proteins. The current study was designed to evaluate the anticancer property of NS seed proteins on the MCF-7 cell line. Methods NS seed extract was prepared in phosphate-buffered saline (PBS), and proteins were precipitated using 80% ammonium sulfate. The crude seed proteins were partially purified using gel filtration chromatography, and peaks were resolved by SDS-PAGE. MTT assay was used to screen the crude proteins and peaks for their cytotoxic effects on MCF-7 cell line. Active Peaks (P1 and P4) were further studied for their role in modulating the expression of genes associated with apoptosis by real-time reverse transcription PCR. For protein identification, proteins were digested, separated, and analyzed with LC-MS/MS. Data analysis was performed using online Mascot, ExPASy ProtParam, and UniProt Knowledgebase (UniProtKB) gene ontology (GO) bioinformatics tools. Results Gel filtration chromatography separated seed proteins into seven peaks, and SDS-PAGE profile revealed the presence of multiple protein bands. Among all test samples, P1 and P4 depicted potent dose-dependent inhibitory effect on MCF-7 cells exhibiting IC50 values of 14.25 ± 0.84 and 8.05 ± 0.22 μg/ml, respectively. Gene expression analysis demonstrated apoptosis as a possible cell killing mechanism. A total of 11 and 24 proteins were identified in P1 and P4, respectively. The majority of the proteins identified are located in the cytosol, associate with biological metabolic processes, and their molecular functions are binding and catalysis. Hydropathicity values were mostly in the hydrophilic range. Conclusion Our findings suggest NS seed proteins as a potential therapeutic agent for cancer. To our knowledge, it is the first study to report the anticancer property of NS seed proteins

    Characterization of Green and Yellow Papaya (<i>Carica papaya</i>) for Anti-Diabetic Activity in Liver and Myoblast Cells and Wound-Healing Activity in Fibroblast Cells

    No full text
    Obesity and diabetes, often characterized as “metabolic syndrome”, have been recognized as two of the most important public health issues worldwide. The objective of the present research was to evaluate green and yellow papaya for anti-oxidation and anti-diabetic properties. Leaves, skin, pulp, and seed samples from papayas were freeze-dried and then extracted in water or 80% methanol. The extracts were used to determine total polyphenolic content and anti-oxidation activities, and to determine biological activities, including glucose uptake, Glut-2 expression, triglyceride reduction, and wound-healing activity. Our data demonstrated that methanol and water extracts of green and yellow papaya have similar concentrations of polyphenols in skin (10–20 mg/g dry powder), leaf (25–30 mg/g dry powder), and pulp (1–3 mg/g dry powder) fractions. However, both methanol and water extracts of seeds from yellow papaya have substantially higher concentrations of polyphenols compared to green papaya. Both water and methanol extracts of yellow papaya exhibited higher anti-oxidation activity compared to green papaya in skin (50–60%), pulp (200–300%), and seeds (10–800%). Old leaves also showed greater anti-oxidation activity (30–40%) compared to new leaves. Pulp extracts from both yellow and green papaya stimulated greater glucose uptake, but only pulp from green papaya stimulated glucose uptake in muscle cells. Similarly, pulp extract stimulated glucose transporter Glut-2 expression in liver cells. The skin, pulp, and seeds of green or yellow papaya showed triglyceride-lowering activity in liver cells by 60–80%, but samples taken from yellow papaya had a more potent effect. Seeds from both green and yellow papaya significantly stimulated the migration of fibroblasts in the wounded area by 2–2.5-fold compared to the untreated control. Consistent with these data, seeds from both green and yellow papaya also significantly stimulated collagen synthesis in fibroblast cells by almost 3-fold. In conclusion, our data indicate that different parts of papaya produce stimulatory effects on glucose uptake, Glut-2 expression, TG reduction, and wound-healing activities. This study concludes that different parts of the papaya can be beneficial for preventing diabetes and diabetes-related wound healing

    Phytochemical profile and antioxidation activity of annona fruit and its effect on lymphoma cell proliferation

    No full text
    Cancers of the lymphatic system are broadly classified into Hodgkin and non-Hodgkin types. Although lymphomas can be effectively treated with chemotherapy, this approach is associated with the risk of adverse side effects. High intake of certain vegetables and fruits is associated with a reduced risk of cancer development. We hypothesized that Annona fruit, which is rich in fibers and phytochemicals that are known to possess anticancer properties, can be effective in inhibiting lymphoma growth. The Annona fruit's fractions were extracted with water, methanol, or chloroform and then assayed for total phenolic, flavonoids, and tannins content; antioxidation activities; and inhibition of in vitro cell proliferation using the Ramos-1 lymphoma cells. The methanol fractions contained the highest phenolics, flavonoids, and tannins content, and antioxidation activity. However, the methanol extracts of skin, pulp, and seeds had a moderate whereas the chloroform extracts of pulp and seeds had strong effects on Ramos-1 cell proliferation. Our findings suggest that Annona fruits may be effective in the prevention or treatment of lymphoma

    Phytochemical profile and antioxidation activity of annona fruit and its effect on lymphoma cell proliferation

    No full text
    Cancers of the lymphatic system are broadly classified into Hodgkin and non-Hodgkin types. Although lymphomas can be effectively treated with chemotherapy, this approach is associated with the risk of adverse side effects. High intake of certain vegetables and fruits is associated with a reduced risk of cancer development. We hypothesized that Annona fruit, which is rich in fibers and phytochemicals that are known to possess anticancer properties, can be effective in inhibiting lymphoma growth. The Annona fruit's fractions were extracted with water, methanol, or chloroform and then assayed for total phenolic, flavonoids, and tannins content; antioxidation activities; and inhibition of in vitro cell proliferation using the Ramos-1 lymphoma cells. The methanol fractions contained the highest phenolics, flavonoids, and tannins content, and antioxidation activity. However, the methanol extracts of skin, pulp, and seeds had a moderate whereas the chloroform extracts of pulp and seeds had strong effects on Ramos-1 cell proliferation. Our findings suggest that Annona fruits may be effective in the prevention or treatment of lymphoma

    Harnessing personalized tailored medicines to digital-based data-enriched edible pharmaceuticals

    No full text
    Tailoring drug products to personalized medicines poses challenges for conventional dosage forms. The prominent reason is the restricted availability of flexible dosage strengths in the market. Inappropriate dosage strengths lead to adverse drug reactions or compromised therapeutic effects. The situation worsens when the drug has a narrow therapeutic window. To overcome these challenges, data-enriched edible pharmaceuticals (DEEP) are novel concepts for designing solid oral products. DEEP have individualized doses and information embedded in quick response (QR) code form. When data are presented in a QR code, the information is printed with edible ink that contains the drug in tailored doses required for the patients. Teaser: Digital-based data-enriched edible pharmaceuticals marketed as new and personalized drug delivery systems that cater the need of all age group of patients

    Potential Efficacy of &beta;-Amyrin Targeting Mycobacterial Universal Stress Protein by In Vitro and In Silico Approach

    No full text
    The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that &beta;-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that &beta;-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions
    corecore