12 research outputs found

    Special issue on plenary and invited papers from ICOPS 2009

    Get PDF
    The nine papers in this special issue were originally presented at the 36th IEEE International Conference on Plasma Science (ICOPS) 2009, held jointly with the 23rd Symposium on Fusion Engineering (SOFE) in San Diego, CA, from May 31 to June 5, 2009

    Laser generated electron transport experiment in a novel wire nail target

    Get PDF
    The transport of high intensity (2x1020 W/cm2) laser generated relativistic electrons with a solid target has been studied in a novel geometry. The targets were 20 um diameter solid copper wires, coated with ~ 2um of titanium, with an 80 um diameter hemispherical termination. They were illuminated by an ~500fs, ~200J pulse of 1.053um laser light focused to a ~ 20um diameter spot centered on the flat face of the hemisphere. K-alpha fluorescence from the Cu and Ti regions was imaged together with extreme ultraviolet (X-UV) emission at 68 and 256eV. Results showed a quasi exponential decline in K-alpha emission along the wire over a distance of a few hundred microns from the laser focus, consistent with bulk Ohmic inhibition of the relativistic electron transport. Weaker Ka and X-UV emission on a longer scale length showed limb brightening suggesting a transition to enhanced transport at the surface of the wire

    Special Issue on Plenary and Invited Papers From ICOPS 2009

    No full text

    Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils

    Get PDF
    Abstract Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20–150 nm thick) irradiated by a laser pulse with intensity 1 × 1021 W/cm2. At this intensity, the laser pulse drives strong electric fields at the rear side of the target that can ionize Cu to charge states with valence L-shell or full K-shell. The highly-charged ions are produced only in a very localized region due to a significant gap between the M- and L-shells’ ionization potentials and can be accelerated by strong, forward-directed sections of the field. Such an “ionization injection” leads to well-pronounced bunches of energetic, highly-charged ions. We also find that for the thinnest target (20 nm) a push by the laser further increases the ion energy gain. Thus, the field ionization, concurrent with the acceleration, offers a promising mechanism for the production of energetic, high-charge ion bunches

    Density measurement of shock compressed foam using two-dimensional x-ray radiography

    Get PDF
    We have used spherically bent quartz crystal to image a laser-generated shock in a foam medium. The foam targets had a density of 0.16 g/cm(3) and thickness of 150 mu m, an aluminum/copper pusher drove the shock. The experiment was performed at the Titan facility at Lawrence Livermore National Laboratory using a 2 ns, 250 J laser pulse to compress the foam target, and a short pulse (10 ps, 350 J) to generate a bright Ti K alpha x-ray source at 4.5 keV to radiograph the shocked target. The crystal used gives a high resolution (similar to 20 mu m) monochromatic image of the shock compressed foam

    A laser parameter study on enhancing proton generation from microtube foil targets

    No full text
    The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type. A pulse length (140-450 fs) and intensity ((4-10) [Formula: see text] W/cm[Formula: see text]) study found an optimum laser configuration (140 fs, 4 [Formula: see text] W/cm[Formula: see text]), in which microtube targets increase the proton cutoff energy by 50% and the yield of highly energetic protons ([Formula: see text] MeV) by a factor of 8[Formula: see text]. When the laser intensity reaches [Formula: see text] W/cm[Formula: see text], the prepulse shutters the microtubes with an overcritical plasma, damping their performance. 2D particle-in-cell simulations are performed, with and without the preplasma profile imported, to better understand the coupling of laser energy to the microtube targets. The simulations are in qualitative agreement with the experimental results, and show that the prepulse is necessary to account for when the laser intensity is sufficiently high
    corecore