8,580 research outputs found
Excitons in Electrostatic Traps
We consider in-plane electrostatic traps for indirect excitons in coupled
quantum wells, where the traps are formed by a laterally modulated gate
voltage. An intrinsic obstacle for exciton confinement in electrostatic traps
is an in-plane electric field that can lead to exciton dissociation. We propose
a design to suppress the in-plane electric field and, at the same time, to
effectively confine excitons in the electrostatic traps. We present
calculations for various classes of electrostatic traps and experimental proof
of principle for trapping of indirect excitons in electrostatic traps.Comment: 4 pages, 3 figure
Collaboration and teamwork: immersion and presence in an online learning environment
In the world of OTIS, an online Internet School for occupational therapists, students from four European countries were encouraged to work collaboratively through problem-based learning by interacting with each other in a virtual semi-immersive environment. This paper describes, often in their own words, the experience of European occupational therapy students working together across national and cultural boundaries. Collaboration and teamwork were facilitated exclusively through an online environment, since the students never met each other physically during the OTIS pilot course. The aim of the paper is to explore the observations that here was little interaction between students from different tutorial groups and virtual teamwork developed in each of the cross-cultural tutorial groups. Synchronous data from the students was captured during tutorial sessions and peer-booked meetings and analysed using the qualitative constructs of āimmersionā, āpresenceā and āreflection in learningā. The findings indicate that āimmersionā was experienced only to a certain extent. However, both āpresenceā and shared presence were found by the students, within their tutorial groups, to help collaboration and teamwork. Other evidence suggests that communities of interest were established. Further study is proposed to support group work in an online learning environment. It is possible to conclude that collaborative systems can be designed, which encourage students to build trust and teamwork in a cross cultural online learning environment.</p
Recommended from our members
Globalizing Terror
The globalization of terror is something new. It goes hand in hand with the globalization of the media. The creation of new media technology has created a public space in which political actors may perform: Terrorists are some of the actors who can now play on a global stage. Kosovo, Israel/Palestine, the twin towers terror is not a sometime thing. Man's inhumanity toward his fellow men makes terror a constant in human affairs. Not very long ago most of the terror was hidden beyond our willingness to wait for the news. That is no longer true. We experience the terror around the world
The provision of education and training for healthcare professionals through the medium of the internet
This paper describes a new initiative to provide Internet based courses to student and professional occupational therapists in four centres in the UK, Belgium the Netherlands and Sweden. The basis of this collaborative Occupational Therapy Internet School (OTIS) is the concept of the āVirtual Collegeā. This comprises the design and implementation of a sophisticated Internet-based system through which courses can be managed, prepared and delivered online in an effective fashion, and where students can communicate both with the staff and their peers. The aim is to support and facilitate the whole range of educational activities within a remote electronic environment. A major feature of the course organisation is the adoption of a problem-based approach in which students will collaborate internationally to propose effective intervention in given case study scenarios.
The paper outlines the rationale for OTIS, the content and structure of the courseware, the technical specification of the system and evaluation criteria. In addition to the more conventional web-based learning facilities generally offered, a number of agent-based approaches are being adopted to assist in the management of the course by ensuring the proper delivery of course materials and to assist the functioning of project groups. </p
Prevention of Acute Hematoma After Face-Lifts
Acute hematoma remains one of the most frequently encountered complications after face-lift surgery. Several risk factors inherent to the patient and omission of certain intraoperative regimens are considered to cause hematoma. Significant risk factors include high blood pressure and male gender. Possible intraoperative regimens for the prevention of hematoma include tumescence infiltration without adrenaline, clotting of raw surfaces with fibrin glue, usage of drains, and application of compression bandages. However, little attention has been paid to postoperative measures. To examine whether different regimens in the postoperative phase can influence the incidence of hematoma, all face-lift patients who underwent surgery by a single surgeon in two different clinics (n=376) with two different postoperative regimens were evaluated over the course of 3years. In group 1 (n=308), all postoperative medication was administered on request including medication for pain control, blood pressure stabilization, and prevention of nausea and vomiting as well as postoperative restlessness and agitation. In group 2 (n=68), this medication was administered prophylactically at the end of the operation before extubation. The hematoma rate was 7% in group 1 and 0% in group 2. This study showed that the prophylactic use of medications (e.g., analgesics, antihypertonics, antiemetics, and sedatives) during the postoperative phase is superior to making drugs available to patients on request and can decrease the occurrence of acute hematoma in face-lift patient
Nanobody-Based Probes for Subcellular Protein Identification and Visualization
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ā¼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities
Carbon dioxide release from retrogressive thaw slumps in Siberia
Abstract
Thawing of ice-rich permafrost soils in sloped terrain can lead to activation of retrogressive thaw slumps (RTSs) which make organic matter available for decomposition that has been frozen for centuries to millennia. Recent studies show that the area affected by RTSs increased in the last two decades across the pan-Arctic. Combining a model of soil carbon dynamics with remotely sensed spatial details of thaw slump area and a soil carbon database, we show that RTSs in Siberia turned a previous quasi-neutral ecosystem into a strong source of carbon dioxide of 367 Ā± 213 gC m-1 a-1. On a global scale, recent CO2 emissions from Siberian thaw slumps of 0.42 Ā± 0.22 Tg carbon per year are negligible so far. However, depending on the future evolution of permafrost thaw and hence thaw slump-affected area, such hillslope processes can transition permafrost landscapes to become a major source of additional CO2 release into the atmosphere.</jats:p
Direct neutron capture of 48Ca at kT = 52 keV
The neutron capture cross section of 48Ca was measured relative to the known
gold cross section at kT = 52 keV using the fast cyclic activation technique.
The experiment was performed at the Van-de-Graaff accelerator, Universitaet
Tuebingen. The new experimental result is in good agreement with a calculation
using the direct capture model. The 1/v behaviour of the capture cross section
at thermonuclear energies is confirmed, and the adopted reaction rate which is
based on several previous experimental investigations remains unchanged.Comment: 9 pages (uses Revtex), 2 postscript figures, accepted for publication
as Brief Report in Phys. Rev.
Numerical solution and spectrum of boundary-domain integral equation for the Neumann BVP with variable coefficient
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 Taylor & Francis.In this paper, a numerical implementation of a direct united boundary-domain integral equation (BDIE) related to the Neumann boundary value problem for a scalar elliptic partial differential equation with a variable coefficient is discussed. The BDIE is reduced to a uniquely solvable one by adding an appropriate perturbation operator. The mesh-based discretization of the BDIEs with quadrilateral domain elements leads to a system of linear algebraic equations (discretized BDIE). Then, the system is solved by LU decomposition and Neumann iterations. Convergence of the iterative method is discussed in relation to the distribution of eigenvalues of the corresponding discrete operators calculated numerically.The work was supported by the grant EP/H020497/1 "Mathematical analysis of localised boundary-domain integral equations for BVPs with variable coefficients" of the EPSRC, UK
An adaptive embedded mesh procedure for leading-edge vortex flows
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76634/1/AIAA-1989-80-667.pd
- ā¦