5 research outputs found
Paratope plasticity in diverse modes facilitates molecular mimicry in antibody response
The immune response against methyl-α -D-mannopyranoside mimicking 12-mer peptide (DVFYPYPYASGS) was analyzed at the molecular level towards understanding the equivalence of these otherwise disparate Ags. The Ab 7C4 recognized the immunizing peptide and its mimicking carbohydrate Ag with comparable affinities. Thermodynamic analyses of the binding interactions of both molecules suggested that the mAb 7C4 paratope lacks substantial conformational flexibility, an obvious possibility for facilitating binding to chemically dissimilar Ags. Favorable changes in entropy during binding indicated the importance of hydrophobic interactions in recognition of the mimicking carbohydrate Ag. Indeed, the topology of the Ag-combining site was dominated by a cluster of aromatic residues, contributed primarily by the specificity defining CDR H3. Epitope-mapping analysis demonstrated the critical role of three aromatic residues of the 12-mer in binding to the Ab. Our studies delineate a mechanism by which mimicry is manifested in the absence of either structural similarity of the epitopes or conformational flexibility in the paratope. An alternate mode of recognition of dissimilar yet mimicking Ags by the anti-peptide Ab involves plasticity associated with aromatic/hydrophobic and van der Waals interactions. Thus, antigenic mimicry may be a consequence of paratope-specific modulations rather than being dependent only on the properties of the epitope. Such modulations may have evolved toward minimizing the consequences of antigenic variation by invading pathogens
Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination
A complex of KAP1 and HP1 is needed to tether AID to the H3K9me3-marked donor switch region during CSR
Molecular mechanisms underlying AID target specificity during antibody diversification
Afin d'Ă©tablir une immunitĂ© durable et adaptĂ©e, le rĂ©pertoire des lymphocytes B est diversifiĂ© par les mĂ©canismes dâhypermutation somatique (HMS) et commutation isotypique (CI). Ces processus sont initiĂ©s par des cassures Ă lâADN induites par Activation Induced Cytidine Deaminase (AID). Lors de la CI, ces lĂ©sions sont reconnues par des facteurs de rĂ©paration de lâADN et rĂ©parĂ©es par jonction dâextrĂ©mitĂ©s non homologues. Cependant, malgrĂ© les multiples voies de rĂ©paration de lâADN, les lĂ©sions gĂ©nĂ©rĂ©es par AID peuvent ĂȘtre rĂ©parĂ©es de maniĂšre aberrante et mĂšnent Ă des recombinaisons illĂ©gitimes. Câest pourquoi de robustes mĂ©canismes de rĂ©gulation et ciblage dâAID sont requis afin de limiter les dommages Ă lâADN au locus Igh dans les cellules B et prĂ©venir les dommages collatĂ©raux pouvant mener Ă une tumorogenĂšse Ă©tendue. Parmi ces mĂ©canismes, des modifications Ă©pigĂ©nĂ©tiques du locus Igh corrĂ©lant avec la CI pourraient ĂȘtre importantes pour le ciblage spĂ©cifique dâAID au locus Igh. Aussi afin dâapprĂ©hender les mĂ©canismes molĂ©culaires qui sous-tendent le ciblage dâAID dans les loci Ig, avons-nous entrepris dâidentifier les facteurs interagissant avec AID et Ă©tudier leur rĂŽle fonctionnel au cours de lâHMS et CI.Nous avons montrĂ© que AID forme un complexe avec les facteurs KAP1 et HP1 qui est retenu au locus Igh, au niveau de la rĂ©gion de switch SÎŒ porteuse de la modification de lâhistone H3 H3K9me3 in vivo. La disruption in vivo du complexe cause un dĂ©faut de formation des cassures dans la rĂ©gion SÎŒ et en un dĂ©faut concomitant de la CI, lâHMS nâĂ©tant pas altĂ©rĂ©e. Ainsi KAP1 et HP1 retiennent AID aux rĂ©sidus H3K9me3 marquant la rĂ©gion SÎŒ afin de permettre une CI efficace.B lymphocytes diversify their antibody repertoire through somatic hypermutation (SHM) and class switch recombination (CSR), which require a single enzyme, Activation induced cytidine deaminase (AID). AID deaminates cytosines to uracils, to produce dU:dG mismatches that are recognized and processed by to result in SHM or CSR. AID-induced DNA lesions are processed to form DNA double-stranded breaks (DSBs) during CSR, recognized by components of the DNA damage response pathway and repaired through non-homologous end joining. Aberrant processing of such DNA breaks leads to increased levels of illegitimate recombination events, therefore tight regulatory and targeting mechanisms are required to restrict AID to the appropriate cell type and loci. Although, CSR correlates with epigenetic modifications at the Igh locus, and these modifications have been proposed to target the CSR machinery, the relationship between these and AID remains unknown. My results provide a mechanism linking AID to epigenetic modifications during CSR. We show that during CSR, AID forms a complex with KAP1 and HP1 that is tethered to the Igh locus (specifically to the donor switch region-Sï), bearing trimethylation at lysine 9 (H3K9me3) in vivo. Furthermore, in vivo disruption of this complex results in inefficient DSB-formation at Sï and a concomitant defect in CSR but not in somatic hypermutation. We thus propose a model in which KAP1 and HP1 tether AID to H3K9me3 residues that mark Sï in order to permit efficient CSR