1,778 research outputs found

    Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4_{0.4}Sr0.6_{0.6}MnO3_{3}

    Get PDF
    We investigate the effects of strain on antiferromagntic (AFM) single crystal thin films of La1x_{1-x}Srx_{x}MnO3_{3} (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic ordering and no indication of a global ferromagnetic phase transition. These behaviors are attributed to epitaxy induced changes in orbital occupation driving different magnetic ordering types. Our findings suggest that different AFM ordering types have a profound impact on the AMR magnitude and character.Comment: http://dx.doi.org/10.1063/1.489242

    Survey: Women and California Law

    Get PDF
    This survey of California law, a regular feature of the Women\u27s Law Forum, summarizes recent California Supreme Court and Court of Appeal decisions of special importance to women. A briefanalysis of the issues pertinent to women raised in each case is provided

    Survey: Women and California Law

    Get PDF
    This survey of California law, a regular feature of the Women\u27s Law Forum, summarizes recent California Supreme Court and Court of Appeal decisions of special importance to women. A briefanalysis of the issues pertinent to women raised in each case is provided

    Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements

    Full text link
    Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits, and performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements, and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection, and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.Comment: 22 pages, 15 figure

    Raman study of the phonon symmetries in BiFeO3_3 single crystals

    Get PDF
    In bismuth ferrite (BiFeO3), antiferromagnetic and ferroelectric order coexist at room temperature, making it of particular interest for studying magnetoelectric coupling. The mutual control of magnetic and electric properties is very useful for a wide variety of applications. This has led to an enormous amount of research into the properties of BiFeO3_3. Nonetheless, one of the most fundamental aspects of this material, namely the symmetries of the lattice vibrations, remains controversial.We present a comprehensive Raman study of BiFeO3_3 single crystals with the approach of monitoring the Raman spectra while rotating the polarization direction of the excitation laser. Our method results in unambiguous assignment of the phonon symmetries and explains the origin of the controversy in the literature. Furthermore, it provides access to the Raman tensor elements enabling direct comparison with theoretical calculations. Hence, this allows the study of symmetry breaking and coupling mechanisms in a wide range of complex materials and may lead to a noninvasive, all-optical method to determine the orientation and magnitude of the ferroelectric polarization.Comment: 5 pages, 4 figures, 1 tabl

    An Optical Study of BG Geminorum: An Ellipsoidal Binary with an Unseen Primar Star

    Full text link
    We describe optical photometric and spectroscopic observations of the bright variable BG Geminorum. Optical photometry shows a pronounced ellipsoidal variation of the K0 I secondary, with amplitudes of ~0.5 mag at VRI and a period of 91.645 days. A deep primary eclipse is visible for wavelengths < 4400A; a shallower secondary eclipse is present at longer wavelengths. Eclipse timings and the radial velocity curve of the K0 secondary star indicate an interacting binary where a lobe-filling secondary, M_2 ~ 0.5 Msun, transfers material into a extended disk around a massive primary, M_1 ~ 4.5 Msun. The primary star is either an early B-type star or a black hole. If it did contain a black hole, BG Gem would be the longest period black hole binary known by a factor of 10, as well as the only eclipsing black hole binary system.Comment: 27 pages, includes 8 figures and 5 tables, accepted to A

    Fabrication and Characterization of Topological Insulator Bi2_2Se3_3 Nanocrystals

    Full text link
    In the recently discovered class of materials known as topological insulators, the presence of strong spin-orbit coupling causes certain topological invariants in the bulk to differ from their values in vacuum. The sudden change of invariants at the interface results in metallic, time reversal invariant surface states whose properties are useful for applications in spintronics and quantum computation. However, a key challenge is to fabricate these materials on the nanoscale appropriate for devices and probing the surface. To this end we have produced 2 nm thick nanocrystals of the topological insulator Bi2_2Se3_3 via mechanical exfoliation. For crystals thinner than 10 nm we observe the emergence of an additional mode in the Raman spectrum. The emergent mode intensity together with the other results presented here provide a recipe for production and thickness characterization of Bi2_2Se3_3 nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics Letters

    The violation of the Hund's rule in semiconductor artificial atoms

    Full text link
    The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-component in spin states. We have verified the validity of the energy shell structure as well as the Hund's rule state population at zero magnetic field. Above given fields, we have observed a violation of the Hund's rule by the suppression of triplets and quartets states at the 1p energy shell, taken as an example. We also compare our present results with those obtained using the LS-coupling scheme for low electronic occupations. We have focused our attention to ground-state properties for GaAs quantum dots populated up to forty electrons.Comment: 5 pages, 2 figures, submitted to Semic. Sci. Techno

    GRO J0422+32: The Lowest Mass Black Hole?

    Full text link
    We have obtained optical and infrared photometry of the soft X-ray transient GRO J0422+32. From this photometry, we find a secondary star spectral type of M1, and an extinction of Av = 0.74 +/- 0.09. We present the first observed infrared (J-, H-, and K-band) ellipsoidal variations, and model them with WD98, a recent version of the Wilson-Devinney light curve modeling code. Assuming no significant contamination of the infrared light curves, we find a lower limit to the inclination angle of 43 degrees corresponding to an upper limit on the mass of the compact object of 4.92 M_sun. Combining the models with the observed spectral energy distribution of the system, the most likely value for the orbital inclination angle is 45 +/- 2 degrees. This inclination angle corresponds to a primary black hole mass of 3.97 +/- 0.95 M_sun. Thus we contend that J0422+32 contains the lowest mass stellar black hole reported, and the first to have a measured mass that falls in the 3 - 5 M_sun range.Comment: 17 pages, 3 figures, 4 tables, Accepted for publication in Ap
    corecore