92 research outputs found

    Economics of the Generation and Management of Municipal Solid Waste

    Get PDF
    This paper examines the generation and management of solid waste (MSW) through the lens of economics. We estimate that the global burden of MSW amounted to 1.3 billion metric tons in 1990, or 0.67 kilograms of waste per person per day. Industrial countries account for a disproportionate share of world MSW relative to their share of world population, while developing countries account for a disproportionate share of the world's MSW relative to their share of world income. Cross-country and time-series analyses reveal that MSW generation is positively associated but inelastic with respect to per capita income, and positively associated and unit elastic with respect to population size. Practices for collecting, processing, and disposing of MSW vary widely across countries in accord with the nature of the waste stream and key features of the environmental and economic context. However the least efficient practices tend to be found in developing countries, where MSW poses serious environmental quality and public health threats. Although considerable evidence indicates that the generation and management of MSW is sensitive to income and price variables, natural incentives to overuse common property and the presence of intergenerational externalities both suggest that private economic behavior will not yield socially optimal outcomes in this area. Community intervention may thereby promote the social good, with evidence accumulating that favors arrangements involving the of private firms. The cost of MSW management is likely to grow faster than the pace of urbanization if urbanization outpaces the development of transportation infrastructures. Our calculations also suggest that improvements in the handling of hazardous MSW will be far less expensive in discounted terms than undoing in the future the damage being caused by current practices.

    Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake

    Get PDF
    Recent studies show that adrenergic agonists and inflammatory cytokines can stimulate skeletal muscle glucose uptake, but it is unclear if glucose oxidation is similarly increased. Thus, the objective of this study was to determine the effects of ractopamine HCl (β1 agonist), zilpaterol HCl (β2 agonist), TNFα, and IL-6 on glucose uptake and oxidation rates in unstimulated and insulin-stimulated soleus muscle strips from adult Sprague-Dawley rats. Effects on phosphorylation of Akt (phospho-Akt), p38 MAPK (phospho-p38), and p44/42 MAPK (phospho-p44/42) was also determined. Incubation with insulin increased (P \u3c 0.05) glucose uptake by ~47%, glucose oxidation by ~32%, and phospho-Akt by ~238%. Insulin also increased (P \u3c 0.05) phospho-p38, but only after 2 hours in incubation. Muscle incubated with β2 agonist alone exhibited ~20% less (P \u3c 0.05) glucose uptake but ~32% greater (P \u3c 0.05) glucose oxidation than unstimulated muscle. Moreover, co-incubation with insulin + β2 agonist increased (P \u3c 0.05) glucose oxidation and phospho-Akt compared to insulin alone. Conversely, β1 agonist did not appear to affect basal or insulin-stimulated glucose metabolism, and neither β agonist affected phospho-p44/42. TNFα and IL-6 increased (P \u3c 0.05) glucose oxidation by ~23% and ~33%, respectively, in the absence of insulin. This coincided with increased (P \u3c 0.05) phospho-p38 and phospho-p44/42 but not phospho-Akt. Furthermore, co-incubation of muscle with insulin + either cytokine yielded glucose oxidation rates that were similar to insulin alone, despite lower (P \u3c 0.05) phospho-Akt. Importantly, cytokine-mediated increases in glucose oxidation rates were not concomitant with greater glucose uptake. These results show that acute β2 adrenergic stimulation, but not β1 stimulation, directly increases fractional glucose oxidation in the absence of insulin and synergistically increases glucose oxidation when combined with insulin. The cytokines, TNFα and IL-6, likewise directly increased glucose oxidation in the absence of insulin, but were not additive in combination with insulin and in fact appeared to disrupt Akt-mediated insulin signaling. Rather, cytokines appear to be acting through MAPKs to elicit effects on glucose oxidation. Regardless, stimulation of glucose oxidation by these key stress factors did not rely upon greater glucose uptake, which may promote metabolic efficiency during acute stress by increasing fractional glucose oxidation without increasing total glucose consumption by muscle

    Body composition estimated by bioelectrical impedance analyses is diminished by prenatal stress in neonatal lambs and by heat stress in feedlot wethers

    Get PDF
    Body composition correlates to carcass value in livestock, which makes the ability to accurately estimate body composition in the live animal beneficial (Berg and Marchello, 1994). Bioelectrical impedance analysis (BIA) is a clinical tool used to assess body composition in humans (Lukaski et al., 1985), but its use in livestock has been minimal. Lean and fat content contribute to profitability for livestock producers, and poor body composition can be caused by stress that occurs either during in utero development (De Blasio et al., 2007) or during postnatal growth (Boyd et al., 2015). Maternal hyperthermia-induced placental insufficiency (Brown et al., 2015) and sustained maternal inflammation (Cadaret et al., 2018) are two established causes of intrauterine growth restriction (IUGR). IUGR-born animals are characterized by asymmetrical growth restriction that alters lifelong body composition due to impaired muscle growth capacity (Yates et al., 2018). In addition, acute heat stress during periods of peak postnatal growth can alter body composition in livestock (Boyd et al., 2015). We postulate that BIA can detect these changes in the live animal. Thus, the objective of this study was to determine whether BIA measurements can predict changes to body composition in live neonatal lambs exposed to intrauterine stress and in heat-stressed feedlot lambs

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Gender differences in the Force Concept Inventory for different educational levels in the United Kingdom

    Get PDF
    The Force Concept Inventory (FCI) is widely used to investigate the effect of education level on conceptual understanding of Newtonian mechanics but has only recently been scrutinized for gender effects and retention. This study examines both the gender gap in first year physics undergraduates compared to the gap for nonphysicists and the FCI retention after three months. All participants were either studying or working at the University of Sheffield in the UK and had completed a similar compulsory level of secondary education. As expected the results show that a greater level of education in physics is associated with a larger average FCI score. However, further analysis shows that there exists a gender gap at all levels of education. The size of the effect of gender is quantified using Cohen’s d and ranges from 0.84 to 1.17 which indicates a large effect due to gender for all levels of education. Despite the FCI having been used as a tool to measure learning gains immediately following instruction in Newtonian mechanics there has been little work to investigate whether this increase in FCI score remains after some time has elapsed. Here the increase in FCI scores is found to remain increased after a three month absence of mechanics-related teaching, and that this retention of FCI scores is independent of gender. Despite this, the gender gap still remains large and statistically significant after the three month delay

    Maternal Inflammation at Mid-gestation in Pregnant Rats Impairs Fetal Muscle Growth and Development at Term

    Get PDF
    Intrauterine growth restriction (IUGR) is a leading cause of perinatal morbidity and mortality. Low birth weight resulting from preterm birth and/or IUGR is an underlying factor in 60–80% of perinatal death worldwide, and is particularly common in developing countries (UNICEF, 2008). Furthermore, studies have linked IUGR and the associated fetal malnutrition to increased incidence of metabolic syndrome in adult life (Barker et al., 1993; Godfrey and Barker, 2000). The “thrifty phenotype hypothesis” developed by David Barker (Hales et al., 1991) states that IUGR-associated fetal malnutrition forces the fetus to spare nutrients by altering tissue-specific metabolism in order to survive. In utero, adaptive changes disproportionately impact skeletal muscle development, growth, and metabolism (Yates et al., 2016). Skeletal muscle is responsible for the majority of insulin-stimulated glucose utilization, and adaptive restriction in muscle growth capacity helps to spare glucose in the IUGR fetus but result in lifelong deficits in muscle mass and metabolic homeostasis (Brown and Hay, 2016). Skeletal muscle growth requires proliferation, differentiation, and fusion of myoblast into new muscle fibers early in gestation and fusion with existing fibers in the third trimester of pregnancy (Zhu et al., 2004). This process can be impaired by inflammation from resident macrophages within skeletal muscle. Classically activated M1 macrophages are pro-inflammatory but can polarize to an anti-inflammatory M2 phenotype that inhibits cytokine production and stimulates tissue repair by producing growth factors (Mantovani et al., 2004; Kharraz et al., 2013). The acute effects of inflammatory factors on myoblast function have been investigated in vitro (Frost et al., 1997; Guttridge et al., 2000), and we postulate that inflammatory stress may have similar effects on fetal myoblasts in utero. Impaired myoblast function and the resulting decrease in muscle growth capacity affect long-term metabolic health. Therefore, the objective of this study was to determine the effect of sustained maternal inflammation at mid-gestation on fetal mortality, muscle growth, and metabolic parameters at term

    Impaired muscle stem cell function in cows with high concentrations of androstenedione in their follicular fluid

    Get PDF
    It is unclear whether androstenedione (A4) increases muscle mass and strength similar to testosterone or whether it produces primarily catabolic effects on muscle-like estrogen (Rasmussen et al., 2000). Summers et al. (2014) observed two populations of cows that exhibit either high (\u3e40 ng/mL; High A4) or low (\u3c20 ng/mL; Low A4) concentrations of A4 within the fluid of the dominant follicle just prior to ovulation. High A4 cows had decreased reproductive rates and shorter times before falling out of the herd, but those that did produce calves weaned them ~10-kg heavier than their low A4 counterparts (Summers et al., 2014). It appears that the difference in weights is due to faster growing and more efficient skeletal muscle. High A4 cows share many characteristics with women suffering from polycystic ovary syndrome (PCOS), whose high levels of circulating androgens are associated with changes in body composition (Kirchengast and Huber, 2001)

    Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term

    Get PDF
    Maternal inflammation induces intrauterine growth restriction (MI-IUGR) of the fetus, which compromises metabolic health in human offspring and reduces value in livestock. The objective of this study was to determine the effect of maternal inflammation at midgestation on fetal skeletal muscle growth and myoblast profiles at term. Pregnant Sprague-Dawley rats were injected daily with bacterial endotoxin (MI-IUGR) or saline (controls) from the 9th to the 11th day of gestational age (dGA; term = 21 dGA). At necropsy on dGA 20, average fetal mass and upper hindlimb cross-sectional areas were reduced (P \u3c 0.05) in MI-IUGR fetuses compared with controls. MyoD+ and myf5+ myoblasts were less abundant (P \u3c 0.05), and myogenin+ myoblasts were more abundant (P \u3c 0.05) in MI-IUGR hindlimb skeletal muscle compared with controls, indicating precocious myoblast differentiation. Type I and Type II hindlimb muscle fibers were smaller (P \u3c 0.05) in MI-IUGR fetuses than in controls, but fiber type proportions did not differ between experimental groups. Fetal blood plasma TNFα concentrations were below detectable amounts in both experimental groups, but skeletal muscle gene expression for the cytokine receptors TNFR1, IL6R, and FN14 was greater (P \u3c 0.05) in MI-IUGR fetuses than controls, perhaps indicating enhanced sensitivity to these cytokines. Maternal blood glucose concentrations at term did not differ between experimental groups, but MI-IUGR fetal blood contained less (P \u3c 0.05) glucose, cholesterol, and triglycerides. Fetal-to-maternal blood glucose ratios were also reduced (P \u3c 0.05), which is indicative of placental insufficiency. Indicators of protein catabolism, including blood plasma urea nitrogen and creatine kinase, were greater (P \u3c 0.05) in MI-IUGR fetuses than in controls. From these findings, we conclude that maternal inflammation at midgestation causes muscle-centric fetal programming that impairs myoblast function, increases protein catabolism, and reduces skeletal muscle growth near term. Fetal muscle sensitivity to inflammatory cytokines appeared to be enhanced after maternal inflammation, which may represent a mechanistic target for improving these outcomes in MI-IUGR fetuses

    Sustained maternal inflammation during the early third trimester yields fetal adaptations that impair subsequent skeletal muscle growth and glucose metabolism in sheep

    Get PDF
    Intrauterine growth restriction (IUGR) is linked to metabolic dysfunction in offspring, but the mediating mechanisms are still under investigation (Barker et al., 1993). IUGR fetuses adapt to their poor intrauterine environment by repartitioning nutrients to organs critical for survival (i.e., brain, heart) at the expense of tissues such as muscle (Yates et al., 2012c). These developmental adaptations help the fetus to survive in utero but have lifelong consequences in offspring; persistent reduction of highly metabolic muscle mass is detrimental to glucose homeostasis (DeFronzo et al., 1981). Glucose metabolism is regulated primarily by insulin, and nutrient depravation is associated with impaired β-cell mass, insulin secretion, and insulin action in the IUGR fetus (Limesand et al., 2006). Moreover, inflammation disrupts insulin action and aids in the development of insulin resistance (Bach et al., 2013). We recently showed that inflammatory cytokines acutely stimulate glucose metabolism despite their antagonistic effects on insulin signaling (Cadaret et al., 2017b). However, we hypothesize that chronic exposure alters responsiveness to cytokines and results in basal cytokine concentrations having a greater inhibitory tone. Furthermore, chronic maternal inflammation may induce fetal inflammatory adaptations that impair muscle growth and metabolism. Therefore, our objective was to determine the effects of sustained maternal inflammation on fetal growth, islet function, and muscle glucose metabolism
    • …
    corecore