78 research outputs found

    Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel

    Get PDF
    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms

    The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption

    Get PDF
    Concerns about acquisition of antibiotic resistance have led to increasing demand for new antimicrobial therapies. OligoG CF-5/20 is an alginate oligosaccharide previously shown to have antimicrobial and antibiotic potentiating activity. We investigated the structural modification of the bacterial cell wall by OligoG CF-5/20 and its effect on membrane permeability. Binding of OligoG CF-5/20 to the bacterial cell surface was demonstrated in Gram-negative bacteria. Permeability assays revealed that OligoG CF-5/20 had virtually no membrane-perturbing effects. Lipopolysaccharide (LPS) surface charge and aggregation were unaltered in the presence of OligoG CF-5/20. Small angle neutron scattering and circular dichroism spectroscopy showed no substantial change to the structure of LPS in the presence of OligoG CF-5/20, however, isothermal titration calorimetry demonstrated a weak calcium-mediated interaction. Metabolomic analysis confirmed no change in cellular metabolic response to a range of osmolytes when treated with OligoG CF-5/20. This data shows that, although weak interactions occur between LPS and OligoG CF-5/20 in the presence of calcium, the antimicrobial effects of OligoG CF-5/20 are not related to the induction of structural alterations in the LPS or cell permeability. These results suggest a novel mechanism of action that may avoid the common route in acquisition of resistance via LPS structural modification

    High-Pass Filtering of Input Signals by the Ih Current in a Non-Spiking Neuron, the Retinal Rod Bipolar Cell

    Get PDF
    Hyperpolarization–activated cyclic nucleotide–sensitive (HCN) channels mediate the If current in heart and Ih throughout the nervous system. In spiking neurons Ih participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of Ih in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated–patch recordings in the dark–adapted slice found that RBCs exhibit Ih, and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency–modulated current stimuli (0.1–30 Hz), displays band–pass behavior in the range of Ih activation. Theoretical modeling and pharmacological blockade demonstrate that high–pass filtering of input signals by Ih, in combination with low–pass filtering by passive properties, fully accounts for this frequency–tuning. Correcting for the depolarization introduced by shunting through the pipette–membrane seal, leads to predict that in darkness Ih is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1–2, in combination with markers of RBCs (PKC) and rod–RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by Ih onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors

    The effect of industrial biocides on sulphate-reducing bacteria under high pressure

    No full text
    link_to_subscribed_fulltex

    Technical risks of offshore structures

    Get PDF
    Offshore areas are rough and high energy areas. Therefore, offshore constructions are prone to high technical risks. This chapter elaborates on the technical risks of corrosion and biofouling and technical risks through mechanical force. The expected lifetime of an offshore structure is to a great extent determined by the risk of failures through such risks. Corrosion and biofouling threaten the robustness of offshore structures. Detailed and standardized rules for protection against corrosion of offshore structures are currently lacking. There is a need for an accepted uniform specification. A major technical risk of a combined wind-mussel farm is that of a drifting aquaculture construction that strikes a wind turbine foundation. We investigate two scenarios related to this risk: (1) Can a striking aquaculture construction cause a significant damage to the foundation? (2) If a drifting aquaculture construction gets stuck around a turbine foundation and thus increases its surface area, can the foundation handle the extra (drag) forces involved? A preliminary qualitative assessment of these scenarios leads to the conclusion that a drifting mussel or seaweed farm does not pose a serious technical threat to the foundation of a wind farm. Damage to the (anticorrosive) paint of the turbine foundation is possible, but this will not lead to short term structural damage. Long term corrosion and damage risks can be prevented by taking appropriate maintenance and repair actions. Contrarily to mussel or seaweed farms, the impact/threat of a drifting fish farm on structural damage to a wind foundation depends on type, size and the way of construction of the fish cages. The risk of extra drag force due to a stuck aquaculture construction relates particularly to jacket constructions because any stuck construction may lead to (strong) increase of the frontal surface area of the immersed jacket structure and thereby give increased drag forces from currents or waves. To ensure an optimal lifetime and lower operational costs maintenance aspects of materials for both offshore wind and aquaculture constructions should be taken into account already in the design phase of combined infrastructure
    • 

    corecore