118 research outputs found
Re-entrant Layer-by-Layer Etching of GaAs(001)
We report the first observation of re-entrant layer-by-layer etching based on
{\it in situ\/} reflection high-energy electron-diffraction measurements. With
AsBr used to etch GaAs(001), sustained specular-beam intensity oscillations
are seen at high substrate temperatures, a decaying intensity with no
oscillations at intermediate temperatures, but oscillations reappearing at
still lower temperatures. Simulations of an atomistic model for the etching
kinetics reproduce the temperature ranges of these three regimes and support an
interpretation of the origin of this phenomenon as the site-selectivity of the
etching process combined with activation barriers to interlayer adatom
migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press
Longtime behavior of nonlocal Cahn-Hilliard equations
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility
in a bounded domain. We prove that the associated dynamical system has an
exponential attractor, provided that the potential is regular. In order to do
that a crucial step is showing the eventual boundedness of the order parameter
uniformly with respect to the initial datum. This is obtained through an
Alikakos-Moser type argument. We establish a similar result for the viscous
nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In
this case the validity of the so-called separation property is crucial. We also
discuss the convergence of a solution to a single stationary state. The
separation property in the nonviscous case is known to hold when the mobility
degenerates at the pure phases in a proper way and the potential is of
logarithmic type. Thus, the existence of an exponential attractor can be proven
in this case as well
Ab initio study of step formation and self-diffusion on Ag(100)
Using the plane wave pseudopotential method we performed density functional
theory calculations on the stability of steps and self-diffusion processes on
Ag(100). Our calculated step formation energies show that the {111}-faceted
step is more stable than the {110}-faceted step. In accordance with
experimental observations we find that the equilibrium island shape should be
octagonal very close to a square with predominately {111}-faceted steps. For
the (100) surface of fcc metals atomic migration proceeds by a hopping or an
exchange process. For Ag(100) we find that adatoms diffuse across flat surfaces
preferentially by hopping. Adatoms approaching the close-packed {111}-faceted
step edges descend from the upper terrace to the lower level by an atomic
exchange with an energy barrier almost identical to the diffusion barrier on
flat surface regions. Thus, within our numerical accuracy (approx +- 0.05 eV)
there is no additional step-edge barrier to descent. This provides a natural
explanation for the experimental observations of the smooth two-dimensional
growth in homoepitaxy of Ag(100). Inspection of experimental results of other
fcc crystal surfaces indicates that our result holds quite generally.Comment: 10 pages, 9 figures. Submitted to Phys. Rev B (October 31, 1996
Atomic Scale Modelling of Two-Dimensional Molecular Self-Assembly on a Passivated Si Surface
International audienceThe self-assembly of two-dimensional (2D) molecular structures on a solid surface relies on the subtle balance between non covalent intermolecular and molecule-surface forces. The energetics of 2D molecular lattices forming different patterns on a passivated semiconductor surface are here investigated by a combination of atomistic simulation methods. Density-functional theory provides structure and charges of the molecules, while metadynamics with empirical forces provides a best guess for the lowest-energy adsorption sites of single molecules and dimers. Subsequently, molecular dynamics simulations of extended molecular assemblies with empirical forces yield the most favorable lattice structures at finite temperature and pressure.The theoretical results are in good agreement with scanning tunneling microscopy observations of self-assembled molecular monolayers on a B-doped Si(111) surface, thus allowing to rationalize the competition of long-range dispersion forces between the molecules and the surface. Such a result demonstrates the interest of this predictive approach for further progress in supramolecular chemistry on semiconductor surface
- …