537 research outputs found

    Particle Image Thermometry for Natural Convection Flows

    Get PDF
    Particle Image Thermometry (PIT) is a technique by which temperature fields can be obtained non-invasively using thermochromic liquid crystals (TLCs) through image processing of experimental true-colour photographs. This is done using a calibration curve (hue versus temperature). With the calibration data, every pixel of the colour photograph is transformed to a temperature value, and thus accurate experimental temperature maps are obtained. Using this technique, examples of steady and unsteady natural convection are presented, which include steady magnetic convection of paramagnetic fluids in a cubic enclosure heated and cooled from opposite walls, and unsteady convective flows in a reservoir model cooled from above (night-time cooling). The instantaneous measurement of temperature fields is very useful for understanding flow characteristics in situations where conventional flow visualisation is not sufficient. This method also provides additional quantitative information for comparisons with numerical modelling

    How expensive space-zero-gravity convection experiments can be carried out in terrestrial conditions – magnetic convection of a paramagnetic fluid

    Get PDF
    Over the last decade or so it has became possible to build high-temperature super-conducting magnets that operate in a laboratory environment. Many new phenomena connected with strong magnetic fields have been reported (e.g. promotion of combustion, magnetic levitation, separation methods for weakly magnetic materials etc.). There are many applications of the use of magnetic force on the Earth. For instance, knowing how to control such a force makes it possible to negate the influence of the gravitational force and study a particular phenomenon as it would occur in the Cosmos, but under terrestrial conditions, avoiding the need for expensive space travel. The use of a magnetic field may also help in many processes such as crystal growth, mixing and material processing. The present work is concerned with magnetic convection of a paramagnetic fluid in a cubical enclosure heated and cooled from the sidewalls. The influence of a 10-T magnetic field on the convection mode of the paramagnetic fluid and the heat transfer rate were investigated numerically and experimentally, and compared with gravitational natural convection. The present study clearly shows that natural convection can be enhanced, and the direction of the convection flow can be changed using a strong magnetic field in terrestrial conditions

    Cosmic-ray Acceleration at Ultrarelativistic Shock Waves: Effects of a "Realistic" Magnetic Field Structure

    Full text link
    First-order Fermi acceleration processes at ultrarelativistic shocks are studied with Monte Carlo simulations. The accelerated particle spectra are derived by integrating the exact particle trajectories in a turbulent magnetic field near the shock. ''Realistic'' features of the field structure are included. We show that the main acceleration process at superluminal shocks is the particle compression at the shock. Formation of energetic spectral tails is possible in a limited energy range only for highly perturbed magnetic fields, with cutoffs occuring at low energies within the resonance energy range considered. These spectral features result from the anisotropic character of particle transport in the downstream magnetic field, where field compression produces effectively 2D perturbations. Because of the downstream field compression, the acceleration process is inefficient in parallel shocks for larger turbulence amplitudes, and features observed in oblique shocks are recovered. For small-amplitude turbulence, wide-energy range particle spectra are formed and modifications of the process due to the existence of long-wave perturbations are observed. In both sub- and superluminal shocks, an increase of \gamma leads to steeper spectra with lower cut-off energies. The spectra obtained for the ``realistic'' background conditions assumed here do not converge to the ``universal'' spectral index claimed in the literature. Thus the role of the first-order Fermi process in astrophysical sources hosting relativistic shocks requires serious reanalysis.Comment: submitted to Ap

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    A stochastic model of jaguar abundance in the Peruvian Amazon under climate variation scenarios

    Full text link
    The jaguar (Panthera onca) is the dominant predator in Central and South America, but is now considered near-threatened. Estimating jaguar population size is difficult, due to uncertainty in the underlying dynamical processes as well as highly variable and sparse data. We develop a stochastic temporal model of jaguar abundance in the Peruvian Amazon, taking into account prey availability, under various climate change scenarios. The model is calibrated against existing data sets and an elicitation study in Pacaya Samiria. In order to account for uncertainty and variability, we construct a population of models over four key parameters, namely three scaling parameters for aquatic, small land, and large land animals and a hunting index. We then use this population of models to construct probabilistic evaluations of jaguar populations under various climate change scenarios characterized by increasingly severe flood and drought events and discuss the implications on jaguar numbers. Results imply that jaguar populations exhibit some robustness to extreme drought and flood, but that repeated exposure to these events over short periods can result in rapid decline. However, jaguar numbers could return to stability—albeit at lower numbers—if there are periods of benign climate patterns and other relevant factors are conducive

    Triple coalescence singularity in a dynamical atomic process

    Full text link
    We show that the high energy limit for the amplitude of the double electron capture to the bound state of the Coulomb field of a nucleus with emission of a single photon is determined by behavior of the wave function in the vicinity of the singular triple coalescence point.Comment: 3 page

    Particle Acceleration at Relativistic Shocks

    Get PDF
    I review the current status of Fermi acceleration theory at relativistic shocks. I first discuss the relativistic shock jump conditions, then describe the non-relativistic Fermi mechanism and the differences introduced by relativistic flows. I present numerical calculations of the accelerated particle spectrum, and examine the maximum energy attainable by this process. I briefly consider the minimum energy for Fermi acceleration, and a possible electron pre-acceleration mechanism.Comment: 17 pages, 4 figures. To appear in "Relativistic Flows in Astrophysics", A.W. Guthmann, M. Georganopoulos, A. Marcowith and K. Manolokou, eds., Lecture Notes in Pysics, Springer Verla
    • …
    corecore