1,182 research outputs found

    A Crankless Motor

    Get PDF

    Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision

    Get PDF
    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (~0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (~0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction and abundance analysis.Comment: Accepted for publication in ApJ; 13 pages, 6 figures, 7 table

    Quantum fluctuation driven first order phase transition in weak ferromagnetic metals

    Full text link
    In a local Fermi liquid (LFL), we show that there is a line of weak first order phase transitions between the ferromagnetic and paramagnetic phases due to purely quantum fluctuations. We predict that an instability towards superconductivity is only possible in the ferromagnetic state. At T=0 we find a point on the phase diagram where all three phases meet and we call this a quantum triple point (QTP). A simple application of the Gibbs phase rule shows that only these three phases can meet at the QTP. This provides a natural explanation of the absence of superconductivity at this point coming from the paramagnetic side of the phase diagram, as observed in the recently discovered ferromagnetic superconductor, UGe2UGe_{2}.Comment: 5 pages, 5 figure

    Pairing symmetry signatures of T1 in superconducting ferromagnets

    Full text link
    We study the nuclear relaxation rate 1/T1 as a function of temperature for a superconducting-ferromagnetic coexistent system using a p-wave triplet model for the superconducting pairing symmetry. This calculation is contrasted with a singlet s-wave one done previously, and we see for the s-wave case that there is a Hebel-Slichter peak, albeit reduced due to the magnetization, and no peak for the p-wave case. We then compare these results to a nuclear relaxation rate experiment on UGe2 to determine the possible pairing symmetry signatures in that material. It is seen that the experimental data is inconclusive to rule out the possibility of s-wave pairing in UGe2UGe_{2}.Comment: 4 pages, 4 figure

    Physical properties of ferromagnetic-superconducting coexistent system

    Full text link
    We studied the nuclear relaxation rate 1/T1 of a ferromagnetic-superconducting system from the mean field model proposed in Ref.14. This model predicts the existence of a set of gapless excitations in the energy spectrum which will affect the properties studied here, such as the density of states and, hence, 1/T1. The study of the temperature variation of 1/T1(for T<Tc) shows that the usual Hebel-Slichter peak exists, but will be reduced because of the dominant role of the gapless fermions and the background magnetic behavior. We have also presented the temperature dependence of ultrasonic attenuation and the frequency dependence of electromagnetic absorption within this model. We are successful in explaining certain experimental results.Comment: 10 Pages, 9 figute

    Acoustic attenuation probe for fermion superfluidity in ultracold atom gases

    Full text link
    Dilute gas Bose-Einstein condensates (BEC's), currently used to cool fermionic atoms in atom traps, can also probe the superfluidity of these fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured in the middle of the trap as a function of the phonon momentum, yields an unambiguous signature of BCS-like superfluidity, provides a measurement of the superfluid gap parameter and gives an estimate of the size of the Cooper-pairs in the BEC-BCS crossover regime. We also predict kinks in the momentum dependence of the damping rate which can reveal detailed information about the fermion quasi-particle dispersion relation.Comment: 4 pages, 2 figures. Revised versio
    • …
    corecore