836 research outputs found
Quantum fluctuation driven first order phase transition in weak ferromagnetic metals
In a local Fermi liquid (LFL), we show that there is a line of weak first
order phase transitions between the ferromagnetic and paramagnetic phases due
to purely quantum fluctuations. We predict that an instability towards
superconductivity is only possible in the ferromagnetic state. At T=0 we find a
point on the phase diagram where all three phases meet and we call this a
quantum triple point (QTP). A simple application of the Gibbs phase rule shows
that only these three phases can meet at the QTP. This provides a natural
explanation of the absence of superconductivity at this point coming from the
paramagnetic side of the phase diagram, as observed in the recently discovered
ferromagnetic superconductor, .Comment: 5 pages, 5 figure
Acoustic attenuation probe for fermion superfluidity in ultracold atom gases
Dilute gas Bose-Einstein condensates (BEC's), currently used to cool
fermionic atoms in atom traps, can also probe the superfluidity of these
fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured
in the middle of the trap as a function of the phonon momentum, yields an
unambiguous signature of BCS-like superfluidity, provides a measurement of the
superfluid gap parameter and gives an estimate of the size of the Cooper-pairs
in the BEC-BCS crossover regime. We also predict kinks in the momentum
dependence of the damping rate which can reveal detailed information about the
fermion quasi-particle dispersion relation.Comment: 4 pages, 2 figures. Revised versio
Physical properties of ferromagnetic-superconducting coexistent system
We studied the nuclear relaxation rate 1/T1 of a
ferromagnetic-superconducting system from the mean field model proposed in
Ref.14. This model predicts the existence of a set of gapless excitations in
the energy spectrum which will affect the properties studied here, such as the
density of states and, hence, 1/T1. The study of the temperature variation of
1/T1(for T<Tc) shows that the usual Hebel-Slichter peak exists, but will be
reduced because of the dominant role of the gapless fermions and the background
magnetic behavior. We have also presented the temperature dependence of
ultrasonic attenuation and the frequency dependence of electromagnetic
absorption within this model. We are successful in explaining certain
experimental results.Comment: 10 Pages, 9 figute
Low-Temperature Spin Diffusion in a Spin-Polarized Fermi Gas
We present a finite temperature calculation of the transverse spin-diffusion
coefficient, , in a dilute degenerate Fermi gas in the presence of a
small external magnetic field, . While the longitudinal diffusion
coefficient displays the conventional low-temperature Fermi-liquid behavior,
, the corresponding results for show three
separate regimes: (a) for ; (b) , for and large spin-rotation
parameter , and (c) for and . Our results are qualitatively consistent with the available
experimental data in weakly spin-polarized and mixtures.Comment: 13 pages, REVTEX, 3 figures available upon request, RU-94-4
The Solar Twin Planet Search II. A Jupiter twin around a solar twin
Through our HARPS radial velocity survey for planets around solar twin stars,
we have identified a promising Jupiter twin candidate around the star HIP11915.
We characterize this Keplerian signal and investigate its potential origins in
stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass
planet with a 3800-day orbital period and low eccentricity. Although we cannot
definitively rule out an activity cycle interpretation, we find that a planet
interpretation is more likely based on a joint analysis of RV and activity
index data. The challenges of long-period radial velocity signals addressed in
this paper are critical for the ongoing discovery of Jupiter-like exoplanets.
If planetary in nature, the signal investigated here represents a very close
analog to the solar system in terms of both Sun-like host star and Jupiter-like
planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
18 Sco: a solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging
We study with unprecedented detail the chemical composition and stellar
parameters of the solar twin 18 Sco in a strictly differential sense relative
to the Sun. Our study is mainly based on high resolution (R ~ 110 000) high S/N
(800-1000) VLT UVES spectra, which allow us to achieve a precision of about
0.005 dex in differential abundances. The effective temperature and surface
gravity of 18 Sco are Teff = 5823+/-6 K and log g = 4.45+/-0.02 dex, i.e., 18
Sco is 46+/-6 K hotter than the Sun and log g is 0.01+/-0.02 dex higher. Its
metallicity is [Fe/H] = 0.054+/-0.005 dex and its microturbulence velocity is
+0.02+/-0.01 km/s higher than solar. Our precise stellar parameters and
differential isochrone analysis show that 18 Sco has a mass of 1.04+/-0.02M_Sun
and that it is ~1.6 Gyr younger than the Sun. We use precise HARPS radial
velocities to search for planets, but none were detected. The chemical
abundance pattern of 18 Sco displays a clear trend with condensation
temperature, showing thus higher abundances of refractories in 18 Sco than in
the Sun. Intriguingly, there are enhancements in the neutron-capture elements
relative to the Sun. Despite the small element-to-element abundance differences
among nearby n-capture elements (~0.02 dex), we successfully reproduce the
r-process pattern in the solar system. This is independent evidence for the
universality of the r-process. Our results have important implications for
chemical tagging in our Galaxy and nucleosynthesis in general.Comment: ApJ, in pres
Thermoelectric Figure of Merit of Strongly Correlated Superlattice Semiconductors
We solved the Anderson Lattice Hamiltonian to get the energy bands of a
strongly correlated semiconductor by using slave boson mean field theory. The
transport properties were calculated in the relaxation-time approximation,and
the thermoelectric figure of merit was obtained for the strongly correlated
semiconductor and its superlattice structures. We found that at room
temperature can reach nearly 2 for the quantum wire lattice structure.We
believe that it is possible to find high values of thermoelectric figure of
merit from strongly correlated semiconductor superlattice systems.Comment: 4 pages, 3 figure
Quasiparticle dynamics and phonon softening in FeSe superconductors
Quasiparticle dynamics of FeSe single crystals revealed by dual-color
transient reflectivity measurements ({\Delta}R/R) provides unprecedented
information on Fe-based superconductors. The amplitude of fast component in
{\Delta}R/R clearly tells a competing scenario between spin fluctuations and
superconductivity. Together with the transport measurements, the relaxation
time analysis further exhibits anomalous changes at 90 K and 230 K. The former
manifests a structure phase transition as well as the associated phonon
softening. The latter suggests a previously overlooked phase transition or
crossover in FeSe. The electron-phonon coupling constant {\lambda} is found to
be 0.16, identical to the value of theoretical calculations. Such a small
{\lambda} demonstrates an unconventional origin of superconductivity in FeSe.Comment: Final published version; 5 pages; 4 figure
Direct Calculation of Spin-Stiffness for Spin-1/2 Heisenberg Models
The spin-stiffness of frustrated spin-1/2 Heisenberg models in one and two
dimensions is computed for the first time by exact diagonalizations on small
clusters that implement spin-dependent twisted boundary conditions. Finite-size
extrapolation to the thermodynamic limit yields a value of for
the spin-stiffness of the unfrustrated planar antiferromagnet. We also present
a general discussion of the linear-response theory for spin-twists, which
ultimately leads to the moment sum-rule.Comment: 11 pgs, TeX, LA-UR-94-94 (to be published in Phys. Rev. B
- …