147 research outputs found

    Memory in nanomagnetic systems: Superparamagnetism versus Spinglass behavior

    Get PDF
    The slow dynamics and concomitant memory (aging) effects seen in nanomagnetic systems are analyzed on the basis of two separate paradigms : superparamagnets and spinglasses. It is argued that in a large class of aging phenomena it suffices to invoke superparamagnetic relaxation of individual single domain particles but with a distribution of their sizes. Cases in which interactions and randomness are important in view of distinctive experimental signatures, are also discussed.Comment: 11 pages and 19 figure

    Ferromagnetic feature from Mn near room temperature in the fine particles of GdMn2Ge2 and TbMn2Ge2

    Full text link
    The magnetization behaviors of GdMn2Ge2 and TbMn2Ge2 in the bulk and in the fine particles obtained by high-energy ball-milling are compared. Pronounced modificayions in the spontaneous, remnent and high-field magnetization in the fine particle form, attributable to Mn are observed. The results indicate that the antiferromagnetism of Mn sub-lattice known for the bulk form in the range 100-300 K gets weakened in favor of ferromagnetism in the fine particles. On the basis of this observation, we infer that there are other factors like size (and possibly defects) also play a role to decide the exact nature of magnetic ordering of Mn in this ternary family of compounds, contrasting the traditionally held view that the basal plane Mn-Mn distance is the crucial controlling parameter.Comment: Communicated for publication on 2nd January 201

    Suicide by unusual methods: a rare case of complex suicide

    Get PDF
    Genital Self-Mutilation (GSM) is usually associated with mental illness. It is considered as the most brutal form of self-harm. Many cases of such self-harm have been described by various authors in different times. However, its existence in absence of any mental illness and using it as a method of suicide is a matter of question. Although, some cases are reported; its incidence is very low. Its association with complex suicide is even much lower. Usually, in complex suicide, the victim chooses some methods which are less painful. Such a complicated case of complex suicide was brought to the tertiary care center of Dibrugarh, Assam for post mortem examination. The deceased, a 36 years old male was brought with history of cutting his external genitalia followed by hanging. The case has been described in this paper with relevant review literature.

    Experimental verification of the inverse Anomalous spin Hall effect with perpendicular magnetic anisotropy Materials

    Full text link
    In this work, the spin pumping technique was employed to investigate the anomalous inverse spin Hall effect in BIG/NiO/Fe samples where BIG[(Bi,Tm)3(Fe,Ga)5O12] exhibits perpendicular magnetic anisotropy. Our results reveal an intriguing phenomenon: when the magnetizations of both ferromagnetic layers align perpendicularly, a distinct spin-to-charge current conversion mechanism occurs. This conversion is intricately linked to the magnetization of the converting layer, spin polarization, and the spin current orientation.Comment: 11 pages, 4 figure

    Surface-state mediated spin-to-charge conversion in Sb films via bilateral spin current injection

    Full text link
    The spin-to-charge conversion phenomena is investigated in a trilayer structure consisting of Co(12 nm)/Sb(t)/Py(12 nm), where the thickness t of the antimony layer is varied. Using the spin-pumping technique, a pure spin current is injected from both FM layers into the middle layer, the DC voltage is then measured. We observe a spin-to-charge mechanism in the Sb layer that exhibits striking similarities to the inverse Rashba-Edelstein effect (IREE), driven by surface states.Comment: 6 pages, 4 figure

    On thermalization of magnetic nano-arrays at fabrication

    Full text link
    We propose a model to predict and control the statistical ensemble of magnetic degrees of freedom in Artificial Spin Ice (ASI) during thermalized adiabatic growth. We predict that as-grown arrays are controlled by the temperature at fabrication and by their lattice constant, and that they can be described by an effective temperature. If the geometry is conducive to a phase transition, then the lowest temperature phase is accessed in arrays of lattice constant smaller than a critical value, which depends on the temperature at deposition. Alternatively, for arrays of equal lattice constant, there is a temperature threshold at deposition and the lowest temperature phase is accessed for fabrication temperatures {\it larger rather than smaller} than this temperature threshold. Finally we show how to define and control the effective temperature of the as-grown array and how to measure critical exponents directly. We discuss the role of kinetics at the critical point, and applications to experiments, in particular to as-grown thermalized square ASI, and to magnetic monopole crystallization in as-grown honeycomb ASI.Comment: 14 pages, 2 figures. A theoretical approach to experimental results reported in: Morgan J P, Stein A, Langridge S and Marrows C (2010) Nature Physics 7 7

    Melting artificial spin ice

    Full text link
    Artificial spin ice arrays of micromagnetic islands are a means of engineering additional energy scales and frustration into magnetic materials. Despite much progress in elucidating the properties of such arrays, the `spins' in the systems studied so far have no thermal dynamics as the kinetic constraints are too high. Here we address this problem by using a material with an ordering temperature near room temperature. By measuring the temperature dependent magnetization in different principal directions, and comparing with simulations of idealized statistical mechanical models, we confirm a dynamical `pre-melting' of the artificial spin ice structure at a temperature well below the intrinsic ordering temperature of the island material. We thus create a spin ice array that has real thermal dynamics of the artificial spins over an extended temperature range

    Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles

    Get PDF
    Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface
    corecore