10 research outputs found
The BMP pathway modulates basic properties of the Drosophila circadian clock
El reloj circadiano controla los ritmos comportamentales, fisiológicos y metabólicos en todos los organismos en los que se lo ha estudiado. Este oscilador, cuya periodicidad es cercana a las 24 hs, se mantiene sincronizado gracias a diversas claves ambientales. En Drosophila, como en otros organismos, se han identificado algunos de los componentes responsables de generar y mantener las oscilaciones moleculares. Asimismo se han caracterizado circuitos neuronales en los que componentes del reloj fluctúan con un período cercano a 24 hs. A lo largo de esta tesis se estudió el rol de la vía de bone morphogenetic protein (BMP) en Drosophila en el circuito neuronal que controla el comportamiento rítmico. Esta vía de señalización, además de estar involucrada en la organogénesis y el crecimiento, funciona como una señal sináptica retrógrada involucrada en la sinaptogénesis, la morfología sináptica y el control de la homeostasis en Drosophila y en otros organismos. La alteración de esta vía en el circuito PDF en estadios adultos conlleva un alargamiento del período endógeno de la actividad locomotora, que correlaciona con el ritmo de acumulación y localización subcelular de period, un componente central del reloj molecular. Los resultados obtenidos a lo largo de este trabajo permiten proponer que la vía de BMP es capaz de modular la trascripción de genes centrales del reloj molecular y que schnurri podría constituir un regulador negativo determinante del nivel de expresión de los genes reloj en Drosophila.The circadian clock controls rhythms in behavior, physiology and metabolism in all living organisms. This internal timekeeping system is entrained by environmental cues such as light and temperature. In Drosophila and other species some of the molecular components as well as the neuronal network responsible to generate and sustain this process have been identified. The long term goal of this thesis has been to study the role of the the bone morphogenetic protein (BMP) in Drosophila in the neural circuit that controls circadian locomotor activity rhythms. This signal transduction pathway is a general regulator of organogenesis and growth in Drosophila and other species, but specifically in the nervous system it constitutes a retrograde signal crucial for processes like synaptogenesis, synaptic morphology and the homeostatic response. Adult-specific alteration of this pathway within the fly circadian network produces a long period phenotype in locomotor behavior, that correlates with an altered (i.e. delayed) accumulation and subcelular localization of PERIOD, a core component of the molecular clock. Our results lend support to the view that the BMP pathway modulates transcription of clock genes, and more specifically, that schnurri could be a negative regulator crucial to determine clock gene expression levels in Drosophila.Fil: Beckwith, Esteban Javier. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks
Gene expression programs activated in response to, or in anticipation of, environmental changes involve sequential steps, from transcription and RNA processing to nuclear export and translation. Here we review recent advances in our understanding of the multiple regulatory layers that control the oscillations in gene expression associated with daily rhythms in metabolism and physiology across eukaryotic organisms. Whereas many genes show coordinated oscillations in transcription, RNA processing and translation, others show significant temporal disconnections between these processes. Thus, circadian oscillations constitute an ideal system for examining how multiple transcriptional and post-transcriptional regulatory steps are integrated to maximize organismal adjustments to environmental conditions.Fil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
Communication between circadian clusters: the key to a plastic network
Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions. It is increasingly clear that the fly clock employs multiple signalling cues, such as neuropeptides, fast neurotransmitters, and other signalling molecules, in the dynamic interplay between neuronal clusters. These neuronal groups seem to interact in a plastic fashion, e.g., rearranging their hierarchy in response to changing environmental conditions. A picture is emerging supporting that these dynamic mechanisms are in place to provide an optimal balance between flexibility and an extraordinary accuracy.Fil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Imperial College London; Reino UnidoFil: Ceriani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin
Experimental assessment of the network properties of the Drosophila circadian clock
Circadian rhythms are conserved across kingdoms and coordinate physiology and behavior for appropriate time-keeping. The neuronal populations that govern circadian rhythms are described in many animal models, and the current challenge is to understand how they interact to control overt rhythms, remaining plastic enough to respond and adapt to a changing environment. In Drosophila melanogaster, the circadian network comprises about 150 neurons, and the main synchronizer is the neuropeptide pigment-dispersing factor (PDF), released by the well-characterized central pacemaker neurons, the small ventral lateral neurons (sLNvs). However, the rules and properties governing the communication and coupling between this central pacemaker and downstream clusters are not fully elucidated. Here we genetically manipulate the speed of the molecular clock specifically in the central pacemaker neurons of Drosophila and provide experimental evidence of their restricted ability to synchronize downstream clusters. We also demonstrate that the sLNv-controlled clusters have an asymmetric entrainment range and were able to experimentally assess it. Our data imply that different clusters are subjected to different coupling strengths, and display independent endogenous periods. Finally, the manipulation employed here establishes a suitable paradigm to test other network properties as well as the cell-autonomous mechanisms running in different circadian-relevant clusters.Fil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ceriani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
The axon-guidance roundabout gene alters the pace of the Drosophila circadian clock
Great efforts have been directed to the dissection of the cell-autonomous circadian oscillator in Drosophila. However, less information is available regarding how this oscillator controls rhythmic rest-activity cycles. We have identified a viable allele of roundabout, robo(hy), where the period of locomotor activity is shortened. From its role in axon-pathfinding, we anticipated developmental defects in clock-relevant structures. However, robo(hy) produced minor defects in the architecture of the circuits essential for rhythmic behaviour. ROBO's presence within the circadian circuit strengthened the possibility of a novel role for ROBO at this postdevelopmental stage. Genetic interactions between pdf (01) and robo(hy) suggest that ROBO could alter the communication within different clusters of the circadian network, thus impinging on two basic properties, periodicity and/or rhythmicity. Early translocation of PERIOD to the nucleus in robo(hy) pacemaker cells indicated that shortened activity rhythms were derived from alterations in the molecular oscillator. Herein we present a mutation affecting clock function associated with a molecule involved in circuit assembly and maintenance.Fil: Berni, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Fernandez, María Paz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ceriani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
Rhythmic behavior is controlled by the SRm160 splicing factor in Drosophila melanogaster
Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day–night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.Fil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Polcowñuk, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Bertolin, Agustina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mancini, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ceriani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin
Functional conservation of clock output signaling between flies and intertidal crabs
Intertidal species have both circadian and circatidal clocks. Although the behavioral evidence for these oscillators is more than 5 decades old, virtually nothing is known about their molecular clockwork. Pigment-dispersing hormones (PDHs) were originally described in crustaceans. Their insect homologs, pigment-dispersing factors (PDFs), have a prominent role as clock output and synchronizing signals released from clock neurons. We show that gene duplication in crabs has led to two PDH genes (β-pdh-I and β-pdh-II). Phylogenetically, β-pdh-I is more closely related to insect pdf than to β-pdh-II, and we hypothesized that β-PDH-I may represent a canonical clock output signal. Accordingly, β-PDH-I expression in the brain of the intertidal crab Cancer productus is similar to that of PDF in Drosophila melanogaster, and neurons that express PDH-I also show CYCLE-like immunoreactivity. Using D. melanogaster pdf-null mutants (pdf(01)) as a heterologous system, we show that β-pdh-I is indistinguishable from pdf in its ability to rescue the mutant arrhythmic phenotype, but β-pdh-II fails to restore the wild-type phenotype. Application of the three peptides to explanted brains shows that PDF and β-PDH-I are equally effective in inducing the signal transduction cascade of the PDF receptor, but β-PDH-II fails to induce a normal cascade. Our results represent the first functional characterization of a putative molecular clock output in an intertidal species and may provide a critical step towards the characterization of molecular components of biological clocks in intertidal organisms.Fil: Beckwith, Esteban Javier. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Lelito, Katherine R.. University Of Michigan; Estados UnidosFil: Hsu, Yun Wei A.. University Of Washington; Estados UnidosFil: Medina, Billie M.. University Of Washington; Estados UnidosFil: Shafer, Orie. University Of Michigan; Estados UnidosFil: Ceriani, Maria Fernanda. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: de la Iglesia, Horacio O. University Of Washington; Estados Unido
A serine-folate metabolic unit controls resistance and tolerance of infection
Immune activation drives metabolic change in most animals. Immune-induced metabolic change is most conspicuous as a driver of pathology in serious or prolonged infection, but it is normally expected to be important to support immune function and recovery. Many of the signalling mechanisms linking immune detection with metabolic regulation, and their specific consequences, are unknown. Here, we show that Drosophila melanogaster respond to many bacterial infections by altering expression of genes of the folate cycle and associated enzymes of amino acid metabolism. The net result of these changes is increased flow of carbon from glycolysis into serine and glycine synthesis and a shift of folate cycle activity from the cytosol into the mitochondrion. Immune-induced transcriptional induction of astray and Nmdmc, the two most-induced of these enzymes, depends on Dif and foxo. Loss of astray or Nmdmc results in infection-specific immune defects. Our work thus shows a key mechanism that connects immune-induced changes in metabolic signalling with the serine-folate metabolic unit to result in changed immune function.Fil: Grimes, Krista. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino UnidoFil: Beckwith, Esteban Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Pearson, William H.. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino UnidoFil: Jacobson, Jake. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino UnidoFil: Chaudhari, Surabhi. Imperial College London; Reino Unido. Imperial College Of Science And Technology; Reino UnidoFil: Aughey, Gabriel N.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Larrouy Maumus, Gerald. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino UnidoFil: Southall, Tony D.. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino UnidoFil: Dionne, Marc S.. Imperial College Of Science And Technology; Reino Unido. Imperial College London; Reino Unid