267 research outputs found
Genome-wide regulation of innate immunity by juvenile hormone and 20-hydroxyecdysone in the Bombyx fat body
<p>Abstract</p> <p>Background</p> <p>Insect innate immunity can be affected by juvenile hormone (JH) and 20-hydroxyecdysone (20E), but how innate immunity is developmentally regulated by these two hormones in insects has not yet been elucidated. In the silkworm, <it>Bombyx mori</it>, JH and 20E levels are high during the final larval molt (4 M) but absent during the feeding stage of 5<sup>th </sup>instar (5 F), while JH level is low and 20E level is high during the prepupal stage (PP). Fat body produces humoral response molecules and hence is considered as the major organ involved in innate immunity.</p> <p>Results</p> <p>A genome-wide microarray analysis of <it>Bombyx </it>fat body isolated from 4 M, 5 F and PP uncovered a large number of differentially-expressed genes. Most notably, 6 antimicrobial peptide (AMP) genes were up-regulated at 4 M versus PP suggesting that <it>Bombyx </it>innate immunity is developmentally regulated by the two hormones. First, JH treatment dramatically increased AMP mRNA levels and activities. Furthermore, 20E treatment exhibited inhibitory effects on AMP mRNA levels and activities, and RNA interference of the 20E receptor <it>EcR</it>-<it>USP </it>had the opposite effects to 20E treatment.</p> <p>Conclusion</p> <p>Taken together, we demonstrate that JH acts as an immune-activator while 20E inhibits innate immunity in the fat body during <it>Bombyx </it>postembryonic development.</p
Effect of Population, Collection Year, After-Ripening and Incubation Condition on Seed Germination of \u3cem\u3eStipa bungeana\u3c/em\u3e
Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations in 2015 and 2016. Dormancy and germination characteristics of fresh and 6-month-old dry-stored seeds were determined by incubating them over a range of alternating temperature regimes in light. Effect of water stress on germination was tested for fresh and 6-month-old dry-stored seeds. Seed dormancy and germination of S. bungeana differed with population and collection year. Six months of dry storage broke seed dormancy, broadened the temperature range for germination and increased among-population differences in germination percentage. The rank order of germination was not consistent in all germination tests, and it varied among populations. Thus, studies on comparing seed dormancy and germination among populations must consider year of collection, seed dormancy states and germination test conditions when selecting seeds for grassland restoration and management
Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus
Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV
Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI
Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects
SU(VAR)3-7 Links Heterochromatin and Dosage Compensation in Drosophila
In Drosophila, dosage compensation augments X chromosome-linked transcription in males relative to females. This process is achieved by the Dosage Compensation Complex (DCC), which associates specifically with the male X chromosome. We previously found that the morphology of this chromosome is sensitive to the amounts of the heterochromatin-associated protein SU(VAR)3-7. In this study, we examine the impact of change in levels of SU(VAR)3-7 on dosage compensation. We first demonstrate that the DCC makes the X chromosome a preferential target for heterochromatic markers. In addition, reduced or increased amounts of SU(VAR)3-7 result in redistribution of the DCC proteins MSL1 and MSL2, and of Histone 4 acetylation of lysine 16, indicating that a wild-type dose of SU(VAR)3-7 is required for X-restricted DCC targeting. SU(VAR)3-7 is also involved in the dosage compensated expression of the X-linked white gene. Finally, we show that absence of maternally provided SU(VAR)3-7 renders dosage compensation toxic in males, and that global amounts of heterochromatin affect viability of ectopic MSL2-expressing females. Taken together, these results bring to light a link between heterochromatin and dosage compensation
Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex
We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase
(GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel
confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization
analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we
focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal
cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern,
yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger
3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed
than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive
fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas
coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted
coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2
and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal
cortex belong to at least two subpopulations of CR-neurons: a glutamatergic excitatory and a GABAergic inhibitory
Molecular Evidence for a Functional Ecdysone Signaling System in Brugia malayi
Filarial parasites such as Brugia malayi and Onchocerca volvulus are the causative agents of the tropical diseases lymphatic filariasis and onchocerciasis, which infect 150 million people, mainly in Africa and Southeast Asia. Filarial nematodes have a complex life cycle that involves transmission and development within both mammalian and insect hosts. The successful completion of the life cycle includes four molts, two of which are triggered upon transmission from one host to the other, human and mosquito, respectively. Elucidation of the molecular mechanisms involved in the molting processes in filarial nematodes may yield a new set of targets for drug intervention. In insects and other arthropods molting transitions are regulated by the steroid hormone ecdysone that interacts with a specialized hormone receptor composed of two different proteins belonging to the family of nuclear receptors. We have cloned from B. malayi two members of the nuclear receptor family that show many sequence and biochemical properties consistent with the ecdysone receptor of insects. This finding represents the first report of a functional ecdysone receptor homolog in nematodes. We have also established a transgenic hormone induction assay in B. malayi that can be used to discover ecdysone responsive genes and potentially lead to screening assays for active compounds for pharmaceutical development
- …