31 research outputs found

    Zooming in on supermassive black holes: how resolving their gas cloud host renders their accretion episodic

    Get PDF
    Born in rapidly evolving mini-halos during the first billion years of the Universe, super- massive black holes (SMBH) feed from gas flows spanning many orders of magnitude, from the cosmic web in which they are embedded to their event horizon. As such, accretion onto SMBHs constitutes a formidable challenge to tackle numerically, and currently requires the use of sub-grid models to handle the flow on small, unresolved scales. In this paper, we study the impact of resolution on the accretion pattern of SMBHs initially inserted at the heart of dense galactic gas clouds, using a custom super-Lagrangian refinement scheme to resolve the black hole (BH) gravitational zone of influence. We find that once the self-gravitating gas cloud host is sufficiently well re- solved, accretion onto the BH is driven by the cloud internal structure, independently of the BH seed mass, provided dynamical friction is present during the early stages of cloud collapse. For a pristine gas mix of hydrogen and helium, a slim disc develops around the BH on sub-parsec scales, turning the otherwise chaotic BH accretion duty cycle into an episodic one, with potentially important consequences for BH feedback. In the presence of such a nuclear disc, BH mass growth predominantly occurs when infalling dense clumps trigger disc instabilities, fuelling intense albeit short-lived gas accretion episodes.Comment: Resubmitted to mnras after reviewer comments, 24 page

    Cosmic evolution of black hole spin and galaxy orientations: clues from the NewHorizon and Galactica simulations

    Get PDF
    Black holes (BHs) are ubiquitous components of the center of most galaxies. In addition to their mass, the BH spin, through its amplitude and orientation, is a key factor in the galaxy formation process, as it controls the radiative efficiency of the accretion disk and relativistic jets. Using the recent cosmological high-resolution zoom-in simulations, NewHorizon and Galactica, in which the evolution of the BH spin is followed on the fly, we have tracked the cosmic history of a hundred BHs with a mass greater than 2×104M⊙. For each of them, we have studied the variations of the three-dimensional angle (Ψ) subtended between the BH spins and the angular momentum vectors of their host galaxies (estimated from the stellar component). The analysis of the individual evolution of the most massive BHs suggests that they are generally passing by three different regimes. First, for a short period after their birth, low-mass BHs (MBH 105 M⊙). In this case, the BH spins tend to be well aligned with the angular momentum of their host galaxy and this configuration is generally stable even though BH merger episodes can temporally induce misalignment. We even find a few cases of BH-galaxy spin anti-alignment that lasts for a long time in which the gas component is counter-rotating with respect to the stellar component. We have also derived the distributions of cos(Ψ) at different redshifts and found that BHs and galaxy spins are generally aligned. Our analysis suggests that the fraction of BH-galaxy pairs with low Ψ values reaches maximum at z∼4-3, and then decreases until z∼1.5 due to the high BH-merger rate. Afterward, it remains almost constant probably due to the fact that BH mergers becomes rare, except for a slight increase at late times. Finally, based on a Monte Carlo method, we also predict statistics for the 2-d projected spin-orbit angles λ. In particular, the distribution of λ traces the alignment tendency well in the three-dimensional analysis. Such predictions provide an interesting background for future observational analyses

    Dynamical friction of a massive black hole in a turbulent gaseous medium

    No full text
    The orbital decay of massive black holes in galaxies in the aftermath of mergers is at the heart of whether massive black holes successfully pair and merge, leading to emission of low-frequency gravitational waves. The role of dynamical friction sourced from the gas distribution has been uncertain because many analytical and numerical studies have either focused on a homogeneous medium or have not reached resolutions below the scales relevant to the problem, namely the Bondi-Hoyle-Lyttleton radius. We perform numerical simulations of a massive black hole moving in a turbulent medium in order to study dynamical friction from turbulent gas. We find that the black hole slows down to the sound speed, rather than the turbulent speed, and that the orbital decay is well captured if the Bondi-Hoyle-Lyttleton radius is resolved with at least five resolution elements. We find that the larger the turbulent eddies, the larger the scatter in dynamical friction magnitude, because of the stochastic nature of the problem, and also of the larger over- and under-densities encountered by the black hole along its trajectory. Compared to the classic solution in a homogeneous medium, the magnitude of the force depends more weakly on the Mach number, and dynamical friction is overall more efficient for high Mach numbers, but less efficient towards and at the transonic regime

    Shattering and growth of cold clouds in galaxy clusters: the role of radiative cooling, magnetic fields, and thermal conduction

    No full text
    International audienceIn galaxy clusters, the hot intracluster medium (ICM) can develop a striking multiphase structure around the brightest cluster galaxy. Much work has been done on understanding the origin of this central nebula, but less work has studied its eventual fate after the originally filamentary structure is broken into individual cold clumps. In this paper, we perform a suite of 30 (magneto)hydrodynamical simulations of kpc-scale cold clouds with typical parameters as found by galaxy cluster simulations, to understand whether clouds are mixed back into the hot ICM or can persist. We investigate the effects of radiative cooling, small-scale heating, magnetic fields, and (anisotropic) thermal conduction on the long-term evolution of clouds. We find that filament fragments cool on time-scales shorter than the crushing time-scale, fall out of pressure equilibrium with the hot medium, and shatter, forming smaller clumplets. These act as nucleation sites for further condensation, and mixing via Kelvin-Helmholtz instability, causing cold gas mass to double within 75 Myr. Cloud growth depends on density, as well as on local heating processes, which determine whether clouds undergo ablation- or shattering-driven evolution. Magnetic fields slow down but do not prevent cloud growth, with the evolution of both cold and warm phase sensitive to the field topology. Counterintuitively, anisotropic thermal conduction increases the cold gas growth rate compared to non-conductive clouds, leading to larger amounts of warm phase as well. We conclude that dense clumps on scales of 500 pc or more cannot be ignored when studying the long-term cooling flow evolution of galaxy clusters

    Dynamical friction of a massive black hole in a turbulent gaseous medium

    No full text
    The orbital decay of massive black holes in galaxies in the aftermath of mergers is at the heart of whether massive black holes successfully pair and merge, leading to emission of low-frequency gravitational waves. The role of dynamical friction sourced from the gas distribution has been uncertain because many analytical and numerical studies have either focussed on a homogeneous medium or have not reached resolutions below the scales relevant to the problem, namely the Bondi-Hoyle-Lyttleton radius. We performed numerical simulations of a massive black hole moving in a turbulent medium in order to study dynamical friction from turbulent gas. We find that the black hole slows down to the sound speed, rather than the turbulent speed, and that the orbital decay is well captured if the Bondi-Hoyle-Lyttleton radius is resolved with at least five resolution elements. We find that the larger the turbulent eddies, the larger the scatter in dynamical friction magnitude, because of the stochastic nature of the problem, and also because of the larger over- and under-densities encountered by the black hole along its trajectory. Compared to the classic solution in a homogeneous medium, the magnitude of the force depends more weakly on the Mach number, and dynamical friction is overall more efficient for high Mach numbers, but less efficient towards and at the transonic regime

    How the super-Eddington regime affects black hole spin evolution in high-redshift galaxies

    No full text
    By performing three-dimensional hydrodynamical simulations of a galaxy in an isolated dark matter halo, we follow the evolution of the spin parameter aa of a black hole (BH) undergoing super-Eddington phases throughout its growth. This regime, suspected to be accompanied by powerful jet outflows, is expected to decrease the BH spin magnitude. We combine super-Eddington accretion with sub-Eddington phases (quasar and radio modes) and follow the BH spin evolution. Due to the low frequency of super-Eddington episodes, relativistic jets in this regime are not able to decrease the magnitude of the spin effectively, as thin disc accretion in the quasar mode inevitably increases the BH spin. The combination of super- and sub-Eddington accretion does not lead to a simple explicit expression for the spin evolution because of feedback from super-Eddington events. An analytical expression can be used to calculate the evolution for a0.3a\lesssim0.3, assuming the super-Eddington feedback is consistently weak. Finally, BHs starting with low spin magnitude are able to grow to the highest mass, and if they initially start misaligned with the galactic disc, they get a small boost of accretion through retrograde accretion

    How the super-Eddington regime regulates black hole growth in high-redshift galaxies

    No full text
    Super-Eddington accretion is one scenario that may explain the rapid assembly of 109M\sim 10^9\rm\, M_\odot supermassive black holes (BHs) within the first billion year of the Universe. This critical regime is associated with radiatively inefficient accretion and accompanied by powerful outflows in the form of winds and jets. By means of hydrodynamical simulations of BH evolution in an isolated galaxy and its host halo with 12 pc resolution, we investigate how super-Eddington feedback affects the mass growth of the BH. It is shown that super-Eddington feedback efficiently prevents BH growth within a few Myr. The super-Eddington accretion events remain relatively mild with typical rates of about 2-3 times the Eddington limit, because of the efficient regulation by jets in that regime. We find that these jets are powerful enough to eject gas from the centre of the host galaxy all the way up to galactic scales at a few kpc, but do not significantly impact gas inflows at those large scales. By varying the jet feedback efficiency, we find that weaker super-Eddington jets allow for more significant BH growth through more frequent episodes of super-Eddington accretion. We conclude that effective super-Eddington growth is possible, as we find that simulations with weak jet feedback efficiencies provide a slightly larger BH mass evolution over long periods of time (80Myr\sim 80\,\rm Myr) than that for a BH accreting at the Eddington limit

    AGN jets do not prevent the saturation of conduction by the heat buoyancy instability in simulated galaxy clusters

    No full text
    Centres of galaxy clusters must be efficiently reheated to avoid a cooling catastrophe. One potential reheating mechanism is anisotropic thermal conduction, which could transport thermal energy from intermediate radii to the cluster center. However, if fields are not re-randomised, anisotropic thermal conduction drives the heat buoyancy instability (HBI) which reorients magnetic field lines and shuts off radial heat fluxes. We revisit the efficiency of thermal conduction under the influence of spin-driven AGN jets in idealised magneto-hydrodynamical simulations with anisotropic thermal conduction. Despite the black hole spin's ability to regularly re-orientate the jet so that the jet-induced turbulence is driven in a quasi-isotropic fashion, the HBI remains efficient outside the central 50 kpc of the cluster, where the reservoir of heat is the largest. As a result, conduction plays no significant role in regulating the cooling of the intra-cluster medium if central active galactic nuclei are the sole source of turbulence

    AGN jets do not prevent the suppression of conduction by the heat buoyancy instability in simulated galaxy clusters

    Full text link
    Centres of galaxy clusters must be efficiently reheated to avoid a cooling catastrophe. One potential reheating mechanism is anisotropic thermal conduction, which could transport thermal energy from intermediate radii to the cluster center. However, if fields are not re-randomised, anisotropic thermal conduction drives the heat buoyancy instability (HBI) which reorients magnetic field lines and shuts off radial heat fluxes. We revisit the efficiency of thermal conduction under the influence of spin-driven AGN jets in idealised magneto-hydrodynamical simulations with anisotropic thermal conduction. Despite the black hole spin's ability to regularly re-orientate the jet so that the jet-induced turbulence is driven in a quasi-isotropic fashion, the HBI remains efficient outside the central 50 kpc of the cluster, where the reservoir of heat is the largest. As a result, conduction plays no significant role in regulating the cooling of the intra-cluster medium if central active galactic nuclei are the sole source of turbulence. Whistler-wave driven saturation of thermal conduction reduces the magnitude of the HBI but does not prevent it.Comment: Resubmitted to A&A. Replaced the whistler wave based simulation after correcting a code bug in the original simulation, and updated results accordingl

    AGN jets do not prevent the saturation of conduction by the heat buoyancy instability in simulated galaxy clusters

    No full text
    Centres of galaxy clusters must be efficiently reheated to avoid a cooling catastrophe. One potential reheating mechanism is anisotropic thermal conduction, which could transport thermal energy from intermediate radii to the cluster center. However, if fields are not re-randomised, anisotropic thermal conduction drives the heat buoyancy instability (HBI) which reorients magnetic field lines and shuts off radial heat fluxes. We revisit the efficiency of thermal conduction under the influence of spin-driven AGN jets in idealised magneto-hydrodynamical simulations with anisotropic thermal conduction. Despite the black hole spin's ability to regularly re-orientate the jet so that the jet-induced turbulence is driven in a quasi-isotropic fashion, the HBI remains efficient outside the central 50 kpc of the cluster, where the reservoir of heat is the largest. As a result, conduction plays no significant role in regulating the cooling of the intra-cluster medium if central active galactic nuclei are the sole source of turbulence
    corecore