3,826 research outputs found

    Active primate simulator Final report

    Get PDF
    Systems engineering data and design specifications for Biosatellite active primate simulato

    The Central Region in M100: Observations and Modeling

    Full text link
    We present new high-resolution observations of the center of the late-type spiral M100 (NGC 4321) supplemented by 3D numerical modeling of stellar and gas dynamics, including star formation (SF). NIR imaging has revealed a stellar bar, previously inferred from optical and 21 cm observations, and an ovally-shaped ring-like structure in the plane of the disk. The K isophotes become progressively elongated and skewed to the position angle of the bar (outside and inside the `ring') forming an inner bar-like region. The galaxy exhibits a circumnuclear starburst in the inner part of the K `ring'. Two maxima of the K emission have been observed to lie symmetrically with respect to the nucleus and equidistant from it slightly leading the stellar bar. We interpret the twists in the K isophotes as being indicative of the presence of a double inner Lindblad resonance (ILR) and test this hypothesis by modeling the gas flow in a self-consistent gas + stars disk embedded in a halo, with an overall NGC4321-like mass distribution. We have reproduced the basic morphology of the region (the bar, the large scale trailing shocks, two symmetric K peaks corresponding to gas compression maxima which lie at the caustic formed by the interaction of a pair of trailing and leading shocks in the vicinity of the inner ILR, both peaks being sites of SF, and two additional zones of SF corresponding to the gas compression maxima, referred usually as `twin peaks').Comment: 31 pages, postscript, compressed, uuencoded. 21 figures available in postscript, compressed form by anonymous ftp from ftp://asta.pa.uky.edu/shlosman/main100 , mget *.ps.Z. To appear in Ap.

    An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies

    Full text link
    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields which govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, S(PI), and the rotation speed, v(rot), of galaxies. This leads to an almost linear correlation between the large-scale magnetic field B and v(rot), assuming that the number of cosmic ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear alpha-Omega dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, B ~ M^(0.25-0.4). Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed B-v(rot) correlation shows that the anisotropic turbulent magnetic field dominates B in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports an stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.Comment: 23 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    The origin of the ionization of the diffuse interstellar medium in spiral galaxies. II. Modelling the distribution of ionizing radiation in NGC 157

    Full text link
    In this paper we make a quantitative study of the hypothesis that the diffuse H-alpha emitted from the discs of spiral galaxies owes its origin to the ionizing photons escaping from HII regions. We use the H-alpha measurements of the complete set of HII regions in the spiral NGC 157, for which an HI density map was available, to derive a family of models which predict the ionizing photon distribution in the disc of this galaxy. The predicted diffuse H-alpha surface brightness distributions from our models were compared with the observed distributions showing that, in general terms, the hypothesis of density bounding for the HII regions allows us to predict well the spatial distribution of the diffuse ionized gas. In the model yielding the best fit to the data, the regions of lower luminosity lose a constant fraction of their ionizing flux to their surroundings, while for HII region luminosities above a specific transition value the ionizing escape fraction is a rising function of the Ha luminosity.Comment: 16 pages, 10 figures (Postscript level 2), accepted for publication in A&

    Introduction to the Special Issue: The Role of Seed Dispersal in Plant Populations: Perspectives and Advances in a Changing World

    Get PDF
    Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies

    Mixed Early and Late-Type Properties in the Bar of NGC 6221: Evidence for Evolution along the Hubble Sequence?

    Get PDF
    Rotation curves and velocity dispersion profiles are presented for both the stellar and gaseous components along five different position angles (P.A.=5, 50, 95, 125 and 155 degrees) of the nearby barred spiral NGC 6221. The observed kinematics extends out to about 80" from the nucleus. Narrow and broad-band imaging is also presented. The radial profiles of the fluxes ratio [NII]/Halpha reveal the presence of a ring-like structure of ionized gas, with a radius of about 9" and a deprojected circular velocity of about 280 km/s. The analysis of the dynamics of the bar indicates this ring is related to the presence of an inner Lindblad resonance (ILR) at 1.3 kpc. NGC6221 is found to exhibit intermediate properties between those of the early-type barred galaxies: the presence of a gaseous ring at an ILR, the bar edge located between the ILR's and the corotation radius beyond the steep rising portion of the rotation curve, the dust-lane pattern, and those of the late-type galaxies: an almost exponential surface brightness profile, the presence of Halpha regions along all the bar, the spiral-arm pattern. It is consistent with scenarios of bar-induced evolution from later to earlier-type galaxies.Comment: 1 File ds7406.tar.gz which contains: one latex file (ds7406.tex), and 10 encsulated postscript figures (ds7406f**.eps). To be compiled with aa-l latex2e macro style. To be published in A&A Sup. Serie

    Semicausal operations are semilocalizable

    Get PDF
    We prove a conjecture by DiVincenzo, which in the terminology of Preskill et al. [quant-ph/0102043] states that ``semicausal operations are semilocalizable''. That is, we show that any operation on the combined system of Alice and Bob, which does not allow Bob to send messages to Alice, can be represented as an operation by Alice, transmitting a quantum particle to Bob, and a local operation by Bob. The proof is based on the uniqueness of the Stinespring representation for a completely positive map. We sketch some of the problems in transferring these concepts to the context of relativistic quantum field theory.Comment: 4 pages, 1 figure, revte
    • …
    corecore