3,347 research outputs found

    Exploring Potential Modifiers of the Association between Neurodevelopmental Disorders and Risk of Bullying Exposure

    Full text link
    This survey study examines data from the National Survey of Children’s Health to determine which sociodemographic factors might modify the association between neurodevelopmental disorders and being bullied

    A composite HII region luminosity function in H alpha of unprecedented statistical weight

    Full text link
    Context. Statistical properties of HII region populations in disk galaxies yield important clues to the physics of massive star formation. Aims. We present a set of HII region catalogues and luminosity functions for a sample of 56 spiral galaxies in order to derive the most general form of their luminosity function. Methods. HII region luminosity functions are derived for individual galaxies which, after photometric calibration, are summed to form a total luminosity function comprising 17,797 HII regions from 53 galaxies. Results. The total luminosity function, above its lower limit of completeness, is clearly best fitted by a double power law with a significantly steeper slope for the high luminosity portion of the function. This change of slope has been reported in the literature for individual galaxies, and occurs at a luminosity of log L = 38.6\pm0.1 (L in erg/s) which has been termed the Stromgren luminosity. A steep fall off in the luminosity function above log L = 40 is also noted, and is related to an upper limit to the luminosities of underlying massive stellar clusters. Detailed data are presented for the individual sample galaxies. Conclusions. The luminosity functions of HII regions in spiral galaxies show a two slope power law behaviour, with a significantly steeper slope for the high luminosity branch. This can be modelled by assuming that the high luminosity regions are density bounded, though the scenario is complicated by the inhomogeneity of the ionized interstellar medium. The break, irrespective of its origin, is of potential use as a distance indicator for disc galaxies.Comment: Accepted for publication as a Letter in Astronomy & Astrophysics. Latex with postscript figures. Online-only tables and figures are included in this preprint. The HII region catalogues for 56 galaxies will be published electronically on the CDS but are available also on request from the author

    A major star formation region in the receding tip of the stellar Galactic bar

    Get PDF
    We present an analysis of the optical spectroscopy of 58 stars in the Galactic plane at l=27l=27\arcdeg, where a prominent excess in the flux distribution and star counts have been observed in several spectral regions, in particular in the Two Micron Galactic Survey (TMGS) catalog. The sources were selected from the TMGS, to have a KK magnitude brighter than +5 mag and be within 2 degrees of the Galactic plane. More than 60% of the spectra correspond to stars of luminosity class I, and a significant proportion of the remainder are very late giants which would also be fast evolving. This very high concentration of young sources points to the existence of a major star formation region in the Galactic plane, located just inside the assumed origin of the Scutum spiral arm. Such regions can form due to the concentrations of shocked gas where a galactic bar meets a spiral arm, as is observed at the ends of the bars of face-on external galaxies. Thus, the presence of a massive star formation region is very strong supporting evidence for the presence of a bar in our Galaxy.Comment: 13 pages (latex) + 4 figures (eps), accepted in ApJ Let

    The kinematics of the quadrupolar nebula M1-75 and the identification of its central star

    Full text link
    The link between the shaping of bipolar planetary nebulae and their central stars is still poorly understood. The kinematics and shaping of the multipolar nebula M 1-75 are hereby investigated, and the location and nature of its central star are briefly discussed. Fabry-Perot data from GHaFAS on the WHT sampling the Doppler shift of the [N II] 658.3 nm line are used to study the dynamics of the nebula, by means of a detailed 3-D spatio-kinematical model. Multi-wavelength images and spectra from the WFC and IDS on the INT, and from ACAM on the WHT, allowed us to constrain the parameters of the central star. The two pairs of lobes, angularly separated by ~22 degrees, were ejected simultaneously approx. ~3500-5000 years ago, at the adopted distance range from 3.5 to 5.0 kpc. The larger lobes show evidence of a slight degree of point symmetry. The shaping of the nebula could be explained by wind interaction in a system consisting of a post-AGB star surrounded by a disc warped by radiative instabilities. This requires the system to be a close binary or a single star which engulfed a planet as it died. On the other hand, we present broad- and narrow-band images and a low S/N optical spectrum of the highly-reddened, previously unnoticed star which is likely the nebular progenitor. Its estimated V-I colour allows us to derive a rough estimate of the parameters and nature of the central star.Comment: 8 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    A major star formation region in the receding tip of the stellar Galactic bar. II. Supplementary information and evidence that the bar is not the same structure as the triaxial bulge previouly reported

    Get PDF
    This paper is the second part of Garzon et al. (1997: ApJ 491, L31) in which we presented an outline of the analysis of 60 spectra from a follow-up program to the Two Micron Galactic Survey (TMGS) project in the l=27 deg., b=0 deg. area. In this second part, we present a more detailed explanation of the analysis as well a library of the spectra for more complete information for each of the 60 stars, and further discussions on the implications for the structure of the Galaxy. This region contains a prominent excess in the flux distribution and star counts previously observed in several spectral ranges, notably in the TMGS. More than 50% of the spectra of the stars detected with m_K<5.0 mag, within a very high confidence level, correspond to stars of luminosity class I, and a significant proportion of the remainder are very late giants which must also be rapidly evolving. We make the case, using all the available evidence, that we are observing a region at the nearer end of the Galactic bar, where the Scutum spiral arm breaks away, and that this is powerful evidence for the presence of the bar. Alternative explanations do not give nearly such a satisfactory account of the observations. The space localization of one and, a fortiori, of both ends of the bar allows us to infer a position angle for the bar of around 75 deg. with respect to the Sun-Galactic centre line. The angle is different from that given by other authors for the bar and this, we think, is because they refer to the triaxial bulge and not to the bar as detected here.Comment: 21 pages, 1 table, 9 figures, accepted in A

    Exponential Gain in Quantum Computing of Quantum Chaos and Localization

    Full text link
    We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization and Anderson transition can be modelled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.Comment: final published versio

    Simulating causal collapse models

    Full text link
    We present simulations of causal dynamical collapse models of field theories on a 1+1 null lattice. We use our simulations to compare and contrast two possible interpretations of the models, one in which the field values are real and the other in which the state vector is real. We suggest that a procedure of coarse graining and renormalising the fundamental field can overcome its noisiness and argue that this coarse grained renormalised field will show interesting structure if the state vector does on the coarse grained scale.Comment: 18 pages, 8 fugures, LaTeX, Reference added, discussion of probability distribution of labellings correcte

    A composite H region luminosity function in Hα of unprecedented statistical weight

    Get PDF
    ABSTRACT Context. Statistical properties of H region populations in disk galaxies yield important clues to the physics of massive star formation. Aims. We present a set of H region catalogues and luminosity functions for a sample of 56 spiral galaxies in order to derive the most general form of their luminosity function. Methods. H region luminosity functions are derived for individual galaxies which, after photometric calibration, are summed to form a total luminosity function comprising 17,797 H regions from 53 galaxies. Results. The total luminosity function, above its lower limit of completeness, is clearly best fitted by a double power law with a significantly steeper slope for the high luminosity portion of the function. This change of slope has been reported in the literature for individual galaxies, and occurs at a luminosity of log L = 38.6 ± 0.1 (L in erg s −1 ) which has been termed the Strömgren luminosity. A steep fall off in the luminosity function above log L = 40 is also noted, and is related to an upper limit to the luminosities of underlying massive stellar clusters. Detailed data are presented for the individual sample galaxies. Conclusions. The luminosity functions of H regions in spiral galaxies show a two slope power law behaviour, with a significantly steeper slope for the high luminosity branch. This can be modelled by assuming that the high luminosity regions are density bounded, though the scenario is complicated by the inhomogeneity of the ionized interstellar medium. The break, irrespective of its origin, is of potential use as a distance indicator for disc galaxies
    • 

    corecore