4,472 research outputs found

    Critical evaluation and compilation of viscosity and diffusivity data Semiannual status report, 1 Nov. 1967 - 30 Apr. 1968

    Get PDF
    Data logging and retrieval system for evaluating molecular diffusion coefficients of binary liquid system

    Current Approaches to Improving the Value of Care: A Physician's Perspective

    Get PDF
    Evaluates the utility of judgment-based approaches to quality improvement -- pay-for-performance, public reporting, consumer-directed health plans, and tiering -- as ways to control costs. Recommends incentive- and accountability-based programs

    Coming From Good Stock: Career Histories and New Venture Formation

    Get PDF
    We examine how the social structure of existing organizations influences entrepreneurship and suggest that resources accrue to entrepreneurs based on the structural position of their prior employers. We argue that information advantages allow individuals from entrepreneurially prominent prior firms to identify new opportunities. Entrepreneurial prominence also reduces the perceived uncertainty of a new venture. Using a sample of Silicon Valley start-ups, we demonstrate that entrepreneurial prominence is associated with initial strategy and the probability of attracting external financing. New ventures with high prominence are more likely to be innovators; furthermore, innovators with high prominence are more likely to obtain financing

    Properties of Reactive Oxygen Species by Quantum Monte Carlo

    Get PDF
    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3−N4N^3-N^4, where NN is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles

    An Empirical Relation Between The Large-Scale Magnetic Field And The Dynamical Mass In Galaxies

    Full text link
    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields which govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, S(PI), and the rotation speed, v(rot), of galaxies. This leads to an almost linear correlation between the large-scale magnetic field B and v(rot), assuming that the number of cosmic ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear alpha-Omega dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, B ~ M^(0.25-0.4). Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed B-v(rot) correlation shows that the anisotropic turbulent magnetic field dominates B in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports an stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.Comment: 23 pages, 4 figures, accepted for publication in the Astrophysical Journal Letter

    The Kinematics of the Ionized and Molecular Hydrogen in the Starburst Galaxy NGC 253

    Get PDF
    Near-infrared H_2 1-0 S(1) and Br_gamma velocity curves along the major axis of NGC 253 have revealed a central velocity gradient that is seven times steeper than that shown by the optical velocity curve. This is interpreted as an optical depth effect due to dust. Approximately 35 mag of visual extinction in the center is required to match the SW side of the optical velocity curve. The spatial variation of the ratio of these lines to the CO (J=1-0) line is compared among starburst galaxies NGC 253, M82, and NGC 4945 to investigate the excitation mechanism responsible for the H_2 1-0 S(1) line.Comment: Uuencoded postscript file, 10 pages (4 tables included), 8 figures available on request to [email protected], Ap.J. (in press

    On the Environmental Dependence of Cluster Galaxy Assembly Timescale

    Get PDF
    We present estimates of CN and Mg overabundances with respect to Fe for early-type galaxies in 8 clusters over a range of richness and morphology. Spectra were taken from the Sloan Digital Sky Survey (SDSS) DR1, and from WHT and CAHA observations. Abundances were derived from absorption lines and single burst population models, by comparing galaxy spectra with appropriately broadened synthetic model spectra. We detect correlations between [Mg/CN] and [CN/Fe] and cluster X-ray luminosity. No correlation is observed for [Mg/Fe]. We also see a clear trend with the richness and morphology of the clusters. This is interpreted given varying formation timescales for CN, Mg and Fe, and a varying star formation history in early-type galaxies as a function of their environment: intermediate-mass early-type galaxies in more massive clusters are assembled on shorter timescales than in less massive clusters, with an upper limit of ~1 Gyr.Comment: Accepted for publication in ApJ Letter
    • …
    corecore