20 research outputs found

    Urokinase-type plasminogen activator and arthritis progression: role in systemic disease with immune complex involvement

    Get PDF
    INTRODUCTION: Urokinase-type plasminogen activator (u-PA) has been implicated in fibrinolysis, cell migration, latent cytokine activation, cell activation, T-cell activation, and tissue remodeling, all of which are involved in the development of rheumatoid arthritis. Previously, u-PA has been reported to play a protective role in monoarticular arthritis models involving mBSA as the antigen, but a deleterious role in the systemic polyarticular collagen-induced arthritis (CIA) model. The aim of the current study is to determine how u-PA might be acting in systemic arthritis models. METHODS: The CIA model and bone marrow chimeras were used to determine the cellular source of u-PA required for the arthritis development. Gene expression of inflammatory and destructive mediators was measured in joint tissue by quantitiative PCR and protein levels by ELISA. The requirement for u-PA in the type II collagen mAb-induced arthritis (CAIA) and K/BxN serum transfer arthritis models was determined using u-PA(-/-) mice. Neutrophilia was induced in the peritoneal cavity using either ovalbumin/anti-ovalbumin or the complement component C5a. RESULTS: u-PA from a bone marrow-derived cell was required for the full development of CIA. The disease in u-PA(-/-) mice reconstituted with bone marrow from C57BL/6 mice was indistinguishable from that in C57BL/6 mice, in terms of clinical score, histologic features, and protein and gene expression of key mediators. u-PA(-/-) mice were resistant to both CAIA and K/BxN serum transfer arthritis development. u-PA(-/-) mice developed a reduced neutrophilia and chemokine production in the peritoneal cavity following ovalbumin/anti-ovalbumin injection; in contrast, the peritoneal neutrophilia in response to C5a was u-PA independent. CONCLUSIONS: u-PA is required for the full development of systemic arthritis models involving immune complex formation and deposition. The cellular source of u-PA required for CIA is bone marrow derived and likely to be of myeloid origin. For immune complex-mediated peritonitis, and perhaps some other inflammatory responses, it is suggested that the u-PA involvement may be upstream of C5a signaling

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore