54 research outputs found

    Lophotrochozoan neuroanatomy: An analysis of the brain and nervous system of Lineus viridis(Nemertea) using different staining techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The now thriving field of neurophylogeny that links the morphology of the nervous system to early evolutionary events relies heavily on detailed descriptions of the neuronal architecture of taxa under scrutiny. While recent accounts on the nervous system of a number of animal clades such as arthropods, annelids, and molluscs are abundant, in depth studies of the neuroanatomy of nemerteans are still wanting. In this study, we used different staining techniques and confocal laser scanning microscopy to reveal the architecture of the nervous system of <it>Lineus viridis </it>with high anatomical resolution.</p> <p>Results</p> <p>In <it>L. viridis</it>, the peripheral nervous system comprises four distinct but interconnected nerve plexus. The central nervous system consists of a pair of medullary cords and a brain. The brain surrounds the proboscis and is subdivided into four voluminous lobes and a ring of commissural tracts. The brain is well developed and contains thousands of neurons. It does not reveal compartmentalized neuropils found in other animal groups with elaborate cerebral ganglia.</p> <p>Conclusions</p> <p>The detailed analysis of the nemertean nervous system presented in this study does not support any hypothesis on the phylogenetic position of Nemertea within Lophotrochozoa. Neuroanatomical characters that are described here are either common in other lophotrochozoan taxa or are seemingly restricted to nemerteans. Since detailed descriptions of the nervous system of adults in other nemertean species have not been available so far, this study may serve as a basis for future studies that might add data to the unsettled question of the nemertean ground pattern and the position of this taxon within the phylogenetic tree.</p

    Compound heterozygous mutations in the luteinizing hormone receptor signal peptide causing 46,XY disorder of sex development.

    Full text link
    Testosterone production by the fetal testis depends on a functional relationship between hCG and the LH/chorionic gonadotrophin receptor (LHCGR). Failure of the receptor to correctly respond to its ligand leads to impaired sexual differentiation in males. A phenotypically-female patient with pubertal delay, had a 46,XY karyotype and was diagnosed with 46X,Y disorder of sex development (DSD). Novel compound heterozygous LHCGR mutations were found in the signal peptide: a duplication p.L10_Q17dup of maternal origin, and a deletion (p.K12_L15del) and a p.L16Q missense mutation of paternal origin. cAMP production was very low for both the deletion and duplication mutations and was halved for the missense mutant. The duplication and missense mutations were both expressed intracellularly, but at very low levels at the cell membrane; they were most likely retained in the endoplasmic reticulum. The deletion mutant had a very limited intracellular expression, indicating impaired biosynthesis. There was reduced expression of all three mutants, which was most marked for the deletion mutation. There was also decreased protein expression of all three mutant receptors. In the deletion mutation, the presence of a lower molecular weight band corresponding to LHCGR monomer, probably due to lack of glycosylation, and a lack of bands corresponding to dimers/oligomers suggests absent ER entry. This novel case of 46X,Y DSD illustrates how three different LHCGR signal peptide mutations led to complete receptor inactivation by separate mechanisms. The study underlines the importance of specific regions of signal peptides and expands the spectrum of LHCGR mutations

    Growth response of syndromic versus non-syndromic children born small for gestational age (SGA) to growth hormone therapy: a Belgian study

    Get PDF
    IntroductionA substantial proportion of SGA patients present with a syndrome underlying their growth restriction. Most SGA cohorts comprise both syndromic and non-syndromic patients impeding delineation of the recombinant human growth hormone (rhGH) response. We present a detailed characterization of a SGA cohort and analyze rhGH response based on adult height (AH).MethodsClinical and auxological data of SGA patients treated with rhGH, who had reached AH, were retrieved from BELGROW, a national database of all rhGH treated patients held by BESPEED (BElgian Society for PEdiatric Endocrinology and Diabetology). SGA patients were categorized in syndromic or non-syndromic patients.Results272 patients were included, 42 classified as syndromic (most frequent diagnosis (n=6): fetal alcohol syndrome and Silver-Russell syndrome). Compared with non-syndromic patients, syndromic were younger [years (median (P10/P90)] 7.43 (4.3/12.37) vs 10.21 (5.43/14.03), p=0.0005), shorter (height SDS -3.39 (-5.6/-2.62) vs -3.07 (-3.74/-2.62), p=0.0253) and thinner (BMI -1.70 (-3.67/0.04) vs -1.14 (-2.47/0.27) SDS, p=0.0054) at start of rhGH treatment. First year rhGH response was comparable (delta height SDS +0.54 (0.24/0.94) vs +0.56 (0.26/0.92), p=0.94). Growth pattern differed with syndromic patients having a higher prepubertal (SDS +1.26 vs +0.83, p=0.0048), but a lower pubertal height gain compared to the non-syndromic group (SDS -0.28 vs 0.44, p=0.0001). Mean rhGH dose was higher in syndromic SGA patients (mg/kg body weight/day 0.047 (0.039/0.064) vs 0.043 (0.035/0.056), p=0.0042). AH SDS was lower in syndromic SGA patients (-2.59 (-4.99/-1.57) vs -2.32 (-3.3/-1.2), p=0.0107). The majority in both groups remained short (&lt;-2 SDS: syndromic 71%, non-syndromic 63%). Total height gain was comparable in both groups (delta height SDS +0.76 (-0.70/1.48) vs +0.86 (-0.12/1.86), p=0.41).ConclusionsCompared to non-syndromic SGA patients, syndromic SGA patients were shorter when starting rhGH therapy, started rhGH therapy earlier, and received a higher dose of rhGH. At AH, syndromic SGA patients were shorter than non-syndromic ones, but their height gain under rhGH therapy was comparable

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    Toxizitäts-, Physiologie und Metabolismusanalysen im Hochdurchsatzverfahren an Leberzellen und von Stammzellen abgeleiteten Leberzellen

    No full text
    A dynamic respiration assay based on luminescence decay time detection of oxygen for high throughput toxicological assessment is presented. The method applies 24-well plates (OxoDishes). Dissolved oxygen concentration is measured by a SensorDishReader reading the oxygen sensor optodes immobilized in the centre of each well. This method allows LC50 calculations and recording of toxicokinetic profiles. Adherent primary rat hepatocytes and Hep G2 cell line were exposed to known toxic compounds. The novel assay showed to be robust, flexible and an improvement to current methods. Three human embryonic stem cell (hESC) lines, which have been directed towards hepatocyte-like cells were characterized and compared to Hep G2 cells and primary human hepatocytes for evaluation of their application for predictive toxicity testing and drug metabolism studies. In multi-well plate formats, repeatedly cells were identified to be hepatocyte-like by morphologic evaluation. Gene expression of liver specific genes and hepatic lineage markers were evaluated. The cells showed functional hepatic characteristics, such as albumin secretion, glycogen storage and urea synthesis. Phase I and phase II metabolism of midazolam, phenacetin and diclofenac was detected for the respective metabolites and the toxicity to diclofenac was confirmed by a toxicodynamics study. The characterization results described here provide a unique overview of the functionality of hESC derived hepatocytes. Multiple physiological and 13C-labeling studies on hESC derived epatocytes-like cells and primary human hepatocytes, exposed to sub-toxic diclofenac concentrations were performed to identify metabolic pathways. In addition, their response to drug treatment was evaluated. Glycolysis, TCA cycle, amino acid degradation, albumin synthesis and pyruvate (re)cycling were considered for a stoichiometric metabolic flux model. MFA analysis revealed influence of sub-toxic diclofenac concentrations on the oxidative phosphorylation pathway.Eine dynamische Hochdurchsatz-Methode zur Bestimmung von Toxizität mittels Messung der Respiration via Lumineszenz-Abklingzeit wurde in dieser Arbeit präsentiert. Hierfür wurden 24-well Platten (OxoDishes) verwendet, die mit Hilfe eines SensorDishReaders die Messung der Gelöst-Sauerstoffkonzentrationen in Kulturmedium mittels immobilisierten Sensoroptoden ermöglichen. Hierdurch konnten LC50-Werte errechnet und toxikokinetische Profile erstellt werden. Es wurde gezeigt, dass diese neue Methode robust, flexibel und eine Verbesserung zu derzeitigen Methoden darstellt. Drei von humanen embryonalen Stammzellen (hESC) abgeleitete Hepatozyt-ähnliche Zellenlinien wurden charakterisiert und mit Hep G2 Zellen und primären Humanhepatozyten verglichen. Diese Studie wurde durchgeführt um die Anwendung dieser Zellen für prädiktive Toxizitäts- und Metabolismusstudien zu evaluieren. Hepatozyt-ähnliche Zellen konnten anhand ihrer Morphologie wiederholt identifiziert werden. Leberspezifische Genexpression und typische hepatische Charakteristika wie Albuminsynthese, Glykogenspeicherung und Harnstoffsynthese wurden identifiziert. Funktionelle Biotransformation der Medikamente Midazolam, Phenacetin und Diclofenac wurde anhand ihrer Metaboliten gezeigt und Diclofenactoxizität wurde zudem durch eine toxikodynamische Studie belegt. Die Ergebnisse der hier gezeigten Charakterisierungsstudie bieten einen Überblick über die Funktionalität der von Stammzellen abgleitenden Hepatozyten. Physiologische und 13C-Markierungsstudien wurden an hESC abgeleiteten hepatozytähnlichen Zellen und primären Humanhepatozyten durchgeführt, die subtoxischen Konzentrationen von Diclofenac ausgesetzt waren, um metabolische Stoffwechselwege und deren Störung in Erwiderung zur Medikamentierung zu identifizieren. Glykolyse, TCA-Zyklus, Aminosäreabbau, Albuminsynthese und Pyruvatzyklen wurden für ein stoichiometrisches metabolisches Flussmodel verwendet. Mittels metabolischer Flussanalyse, konnte der Einfluss von subtoxischen Diclofenac-Konzentrationen auf die Atmungskette gezeigt werden

    La déficience en FSH : actualités cliniques et thérapeutiques

    Full text link
    L'hormone lutéinisante (LH) et l'hormone folliculostimulante (FSH) - hormones glycoprotéiques hypophysaires - régulent de concert la production de stéroïdes sexuels et la reproduction. Les stéroïdes sexuels sont indispensables à la virilisation et à la féminisation, et participent également à la gamétogenèse (spermatogenèse chez l'homme et folliculogenèse chez la femme). Cet article sur le déficit en FSH fait suite à un article précédent publié dans Urologic décrivant le déficit en LH et ses conséquences sur la reproduction

    Metabolic profiling using HPLC allows classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes.

    No full text
    Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening comprising of not only electrophysiological characterization but also cellular molecular alterations are expected to improve the cardiotoxicity prediction potential. Metabolomic approaches recently have become an important focus of research in pharmacological testing and prediction. In this study, the culture medium supernatants from HL-1 cardiomyocytes after exposure to drugs from different classes (analgesics, antimetabolites, anthracyclines, antihistamines, channel blockers) were analyzed to determine specific metabolic footprints in response to the tested drugs. Since most drugs influence energy metabolism in cardiac cells, the metabolite "sub-profile" consisting of glucose, lactate, pyruvate and amino acids was considered. These metabolites were quantified using HPLC in samples after exposure of cells to test compounds of the respective drug groups. The studied drug concentrations were selected from concentration response curves for each drug. The metabolite profiles were randomly split into training/validation and test set; and then analysed using multivariate statistics (principal component analysis and discriminant analysis). Discriminant analysis resulted in clustering of drugs according to their modes of action. After cross validation and cross model validation, the underlying training data were able to predict 50%-80% of conditions to the correct classification group. We show that HPLC based characterisation of known cell culture medium components is sufficient to predict a drug's potential classification according to its mode of action
    corecore