35,197 research outputs found

    The 2-10 keV emission properties of PSR B1937+21

    Get PDF
    We present the results of a BeppoSAX observation of the fastest pulsar known: PSR B1937+21. The ~ 200 ks observation (78.5 (34) ks MECS (LECS) exposure times) allowed us to investigate with high statistical significance both the spectral properties and the pulse profile shape. The absorbed power law spectral model gave a photon index of ~ 1.7 and N_H ~ 2.3 x 10^22 cm^-2. These values explain both a) the ROSAT non-detection and b) the deviant estimate of a photon index of ~ 0.8 obtained by ASCA. The pulse profile appears, for the first time, clearly double peaked with the main component much stronger than the other. The statistical significance is 10 sigma (main peak) and 5 sigma (secondary peak). The 1.6-10 keV pulsed fraction is consistent with 100%; only in the 1.6-4 keV band there is a ~ 2 sigma indication for a DC component. The secondary peak is detected significantly only for energies above 3 / 4 keV. The unabsorbed (2-10 keV) flux is F_2-10 = 3.7 x 10^-13 erg cm^-2 s^-1, implying a luminosity of L_X = 4.6 x 10^31 Theta (d/3.6 kpc)^2 erg s^-1 and an X-ray efficiency of eta = 4 x 10^-5 Theta, where Theta is the solid angle spanned by the emission beam. These results are in agreement with those obtained by ASCA.Comment: 4 pages, 4 figures, 2 tables. To appear in the Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper. Proceedings are available as MPE-Report 27

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit

    How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest

    Get PDF
    We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high- resolution HIRES spectra at 2.0 < z < 6.4. From the HIRES spectra, we obtain a lower limit of mwdm > 1.2 keV 2 sigma if the WDM consists of early decoupled thermal relics and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-alpha flux power spectrum, we get mwdm > 4 keV and mwdm > 28 keV (2 sigma) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor two.Comment: Some issues clarified (especially resolution related). Conclusions unchanged. Accepted version by PR

    Strong-field approximation for intense-laser atom processes: the choice of gauge

    Full text link
    The strong-field approximation can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact numerical solution of the time-dependent Schr\"odinger equation.Comment: 5 pages, 3 figures, revtex

    Discovery of excess O I absorption towards the z = 6.42 QSO SDSS J1148+5251

    Full text link
    We present a search for O I in the spectra of nine 4.9 < z_qso < 6.4 QSOs taken with Keck/HIRES. We detect six systems with N(O I) > 10^13.7 cm^{-2} in the redshift intervals where O I 1302 falls redward of the Ly-alpha forest. Four of these lie towards SDSS J1148+5251 (z_qso = 6.42). This imbalance is unlikely to arise from variations in sensitivity among our data or from a statistical fluctuation. The excess O I occurs over a redshift interval that also contains transmission in Ly-alpha and Ly-beta. Therefore, if these O I systems represent pockets of neutral gas, then they must occur within or near regions of the IGM that are highly ionized. In contrast, no O I is detected towards SDSS J1030+0524 (z_qso = 6.30), whose spectrum shows complete absorption in Ly-alpha and Ly-beta over \Delta z ~ 0.2. Assuming no ionization corrections, we measure mean abundance ratios = -0.04 +/- 0.06, = -0.31 +/- 0.09, and = -0.34 +/- 0.07 (2 sigma), which are consistent with enrichment dominated by Type II supernovae. The O/Si ratio limits the fraction of silicon in these systems contributed by metal-free very massive stars to < 30%, a result which is insensitive to ionization corrections. The ionic comoving mass densities along the z_qso > 6.2 sightlines, including only the detected systems, are \Omega(O I) = (7.0 +/- 0.6) * 10^{-8}, \Omega(Si II) = (9.6 +/- 0.9) * 10^{-9}, and \Omega(C II) = (1.5 +/- 0.2) * 10^{-8}.Comment: Submitted to ApJ, with changes to reflect referee's comment

    Cumulant approach to weakly doped antiferromagnets

    Full text link
    We present a new approach to static and dynamical properties of holes and spins in weakly doped antiferromagnets in two dimensions. The calculations are based on a recently introduced cumulant approach to ground--state properties of correlated electronic systems. The present method allows to evaluate hole and spin--wave dispersion relations by considering hole or spin excitations of the ground state. Usually, these dispersions are found from time--dependent correlation functions. To demonstrate the ability of the approach we first derive the dispersion relation for the lowest single hole excitation at half--filling. However, the main purpose of this paper is to focus on the mutual influence of mobile holes and spin waves in the weakly doped system. It is shown that low-energy spin excitations strongly admix to the ground--state. The coupling of spin waves and holes leads to a strong suppression of the staggered magnetization which can not be explained by a simple rigid--band picture for the hole quasiparticles. Also the experimentally observed doping dependence of the spin--wave excitation energies can be understood within our formalism.Comment: REVTEX, 25 pages, 7 figures (EPS), to be published in Phys. Rev.

    A Coherent Timing Solution for the Nearby Isolated Neutron Star RX J0720.4-3125

    Full text link
    We present the results of a dedicated effort to measure the spin-down rate of the nearby isolated neutron star RX J0720.4-3125. Comparing arrival times of the 8.39-sec pulsations for data from Chandra we derive an unambiguous timing solution for RX J0720.4-3125 that is accurate to 5 years. Adding data from XMM and ROSAT, the final solution yields Pdot=(6.98+/-0.02)x10^(-14) s/s; for dipole spin-down, this implies a characteristic age of 2 Myr and a magnetic field strength of 2.4e13 G. The phase residuals are somewhat larger than those for purely regular spin-down, but do not show conclusive evidence for higher-order terms or a glitch. From our timing solution as well as recent X-ray spectroscopy, we concur with recent suggestions that RX J0720.4-3125 is most likely an off-beam radio pulsar with a moderately high magnetic field.Comment: 5 pages, 1 figure. Accepted for publication in ApJ
    • …
    corecore