47,816 research outputs found
Packaging of a large capacity magnetic bubble domain spacecraft recorder
A Solid State Spacecraft Data Recorder (SSDR), based on bubble domain technology, having a storage capacity of 10 to the 8th power bits, was designed and is being tested. The recorder consists of two memory modules each having 32 cells, each cell containing sixteen 100 kilobit serial bubble memory chips. The memory modules are interconnected to a Drive and Control Unit (DCU) module containing four microprocessors, 500 integrated circuits, a RAM core memory and two PROM's. The two memory modules and DCU are housed in individual machined aluminum frames, are stacked in brick fashion and through bolted to a base plate assembly which also houses the power supply
The electron spectra in the synchrotron nebula of the supernova remnant G 29.7-0.3
EXOSAT results obtained with the imaging instrument (CMA) and the medium energy proportional counters (ME) are discussed. Assuming that the featureless power-law spectrum obtained in the 2 to 10 keV range is synchrotron radiation from relativistic electrons, one derives constraints on magnetic field strength and age of the nebula. The energy spectra of the electrons responsible for the emission in the radio and X-ray ranges are discussed. The great similarity of the physical properties of G 29.7-0.3 and of three synchrotron nebulae containing a compact object observed to pulse in X-rays makes G 29.7 - 0.3 a very promising candidate for further search for pulsed emission. Further observations at infrared wavelengths might reveal the break(s) in the emitted spectrum expected from the radio and X-ray power-law indices and give us more information on the production of the electron populations responsible for the emission of the nebula
Theoretical analysis of STM-derived lifetimes of excitations in the Shockley surface state band of Ag(111)
We present a quantitative many-body analysis using the GW approximation of
the decay rate due to electron-electron scattering of excitations in
the Shockley surface state band of Ag(111), as measured using the scanning
tunnelling microscope (STM). The calculations include the perturbing influence
of the STM, which causes a Stark-shift of the surface state energy and
concomitant increase in . We find varies more rapidly with
than recently found for image potential states, where the STM has been shown to
significantly affect measured lifetimes. For the Shockley states, the
Stark-shifts that occur under normal tunnelling conditions are relatively small
and previous STM-derived lifetimes need not be corrected.Comment: 4 pages, 3 figure
Deformed Brueckner-Hartree-Fock calculations
The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems is generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock Theory
Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties
The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used
Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey
We investigate faint radio emission from low- to high-luminosity Active
Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their
radio properties are inferred by co-adding large ensembles of radio image
cut-outs from the FIRST survey, as almost all of the sources are individually
undetected. We correlate the median radio flux densities against a range of
other sample properties, including median values for redshift, [OIII]
luminosity, emission line ratios, and the strength of the 4000A break. We
detect a strong trend for sources that are actively undergoing star-formation
to have excess radio emission beyond the ~10^28 ergs/s/Hz level found for
sources without any discernible star-formation. Furthermore, this additional
radio emission correlates well with the strength of the 4000A break in the
optical spectrum, and may be used to assess the age of the star-forming
component. We examine two subsamples, one containing the systems with emission
line ratios most like star-forming systems, and one with the sources that have
characteristic AGN ratios. This division also separates the mechanism
responsible for the radio emission (star-formation vs. AGN). For both cases we
find a strong, almost identical, correlation between [OIII] and radio
luminosity, with the AGN sample extending toward lower, and the star-formation
sample toward higher luminosities. A clearer separation between the two
subsamples is seen as function of the central velocity dispersion of the host
galaxy. For systems with similar redshifts and velocity dispersions, the
star-formation subsample is brighter than the AGN in the radio by an order of
magnitude. This underlines the notion that the radio emission in star-forming
systems can dominate the emission associated with the AGN.Comment: Accepted for publication in Astronomical Journal; 15 pages, 8 color
figure
- …