364 research outputs found

    Relaxation dynamics of an isolated large-spin Fermi gas far from equilibrium

    Full text link
    A fundamental question in many-body physics is how closed quantum systems reach equilibrium. We address this question experimentally and theoretically in an ultracold large-spin Fermi gas where we find a complex interplay between internal and motional degrees of freedom. The fermions are initially prepared far from equilibrium with only a few spin states occupied. The subsequent dynamics leading to redistribution among all spin states is observed experimentally and simulated theoretically using a kinetic Boltzmann equation with full spin coherence. The latter is derived microscopically and provides good agreement with experimental data without any free parameters. We identify several collisional processes, which occur on different time scales. By varying density and magnetic field, we control the relaxation dynamics and are able to continuously tune the character of a subset of spin states from an open to a closed system.Comment: 18 pages, 9 figure

    Engineering spin waves in a high-spin ultracold Fermi gas

    Full text link
    We report on the detailed study of multi-component spin-waves in an s=3/2 Fermi gas where the high spin leads to novel tensorial degrees of freedom compared to s = 1/2 systems. The excitations of a spin-nematic state are investigated from the linear to the nonlinear regime, where the tensorial character is particularly pronounced. By tuning the initial state we engineer the tensorial spin-wave character, such that the magnitude and sign of the counterflow spin-currents are effectively controlled. A comparison of our data with numerical and analytical results shows excellent agreement.Comment: 9 pages, 4 figure
    corecore