603 research outputs found

    Baltic provenance of top-Famennian siliciclastic material of the northern Rhenish Massif, Rhenohercynian zone of the Variscan orogen

    Get PDF
    The provenance of top-Famennian sedimentary rocks linked to the Hangenberg Crisis from the northern Rhenish Massif (Germany) was investigated by the means of detrital zircon U-Pb geochronology. Based on the obtained age spectra, three main tectonothermal domains are recognized as possible sources: Paleo- and Mesoproterozoic (~ 2000–1000 Ma) units of Baltica and Early Paleozoic Caledonian orogen (~ 500–400 Ma). Our interpretation of the detritus having been derived from northern source areas, i.e., Baltica and the Scandinavian Caledonides, with a minor input of German-Polish (Rügen-Pomeranian) Caledonides, contradicts the traditional view that, during the Upper Devonian, the northern Rhenish Massif was supplied by detritus from the south. Complementary mineralogical, textural and geochemical analyses point to a derivation of the detritus of Drewer and Hangenberg Sandstones mainly from felsic, recycled continental crust. The elevated concentrations of Pb and Zn in the studied sections are a feature attributed to hydrothermal alteration related to the terminal Devonian synsedimentary volcanism or post-depositional Variscan deformation

    Reply to Comment by M.F. Pereira, J.B. Silva and C. Gama on "Baltic provenance of top-Famennian siliciclastic material of the northern Rhenish Massif, Rhenohercynian zone of the Variscan orogen, by Koltonik et al., International Journal of Earth Sciences (2018) 107:2645–2669"

    Get PDF
    The authors of the Comment suggest that our geological overview map of the European Variscides is incorrect in the section showing SW Iberia (our Fig. 1a). However, our paper reports results of the provenance study from the northern Rhenish Massif, and does not attempt to discuss the architecture and tectonic evolution of the Appalachian-Variscan belt. The aim of Fig. 1 is to locate the study area in the geological context of the European Variscides and not to extrapolate the implications of our findings down to southern Portugal. The map is mostly based on Franke (2014) that is explicitly stated in the caption. Our results are neutral towards the hypothetical correlation between the Mid-German Crystalline High and the southern domains of the Ossa-Morena Zone that is shown on the map[…

    Genome-Wide Analysis of LIM Gene Family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa

    Get PDF
    In Eukaryotes, LIM proteins act as developmental regulators in basic cellular processes such as regulating the transcription or organizing the cytoskeleton. The LIM domain protein family in plants has mainly been studied in sunflower and tobacco plants, where several of its members exhibit a specific pattern of expression in pollen. In this paper, we finely characterized in poplar six transcripts encoding these proteins. In Populus trichocarpa genome, the 12 LIM gene models identified all appear to be duplicated genes. In addition, we describe several new LIM domain proteins deduced from Arabidopsis and rice genomes, raising the number of LIM gene models to six for both species. Plant LIM genes have a core structure of four introns with highly conserved coding regions. We also identified new LIM domain proteins in several other species, and a phylogenetic analysis of plant LIM proteins reveals that they have undergone one or several duplication events during the evolution. We gathered several LIM protein members within new monophyletic groups. We propose to classify the plant LIM proteins into four groups: αLIM1, βLIM1, γLIM2, and δLIM2, subdivided according to their specificity to a taxonomic class and/or to their tissue-specific expression. Our investigation of the structure of the LIM domain proteins revealed that they contain many conserved motifs potentially involved in their function
    corecore