682 research outputs found

    Making video communication mobile by using a small humanoid social assistive robot

    Get PDF
    There is a high need among older persons to maintain their social contacts and to stay involved in social life. In this area of social communication ICT and assistive technology can bring a significant support provided that the actual needs and preferences of the user groups are actually met. The paper describes an innovative solution consisting of a mobile video communication facility using a LED projector which is integrated in a social assistive robot system developed in the framework of the KSERA project

    Making video communication mobile by using a small humanoid social assistive robot

    Get PDF
    There is a high need among older persons to maintain their social contacts and to stay involved in social life. In this area of social communication ICT and assistive technology can bring a significant support provided that the actual needs and preferences of the user groups are actually met. The paper describes an innovative solution consisting of a mobile video communication facility using a LED projector which is integrated in a social assistive robot system developed in the framework of the KSERA project

    Cosmological Magnetogenesis driven by Radiation Pressure

    Full text link
    The origin of large scale cosmological magnetic fields remains a mystery, despite the continuous efforts devoted to that problem. We present a new model of magnetic field generation, based on local charge separation provided by an anisotropic and inhomogeneous radiation pressure. In the cosmological context, the processes we explore take place at the epoch of the reionisation of the Universe. Under simple assumptions, we obtain results (i) in terms of the order of magnitude of the field generated at large scales and (ii) in terms of its power spectrum. The amplitudes obtained (B ~ 8.10^(-6) micro-Gauss) are considerably higher than those obtained in usual magnetogenesis models and provide suitable seeds for amplification by adiabatic collapse and/or dynamo during structure formation.Comment: 9 pages, 2 figure

    On Selecting and Scheduling Assembly Plans Using Constraint Programming

    Get PDF
    This work presents the application of Constraint Programming to the problem of selecting and sequencing assembly operations. The set of all feasible assembly plans for a single product is represented using an And/Or graph. This representation embodies some of the constraints involved in the planning problem, such as precedence of tasks, and the constraints due to the completion of a correct assembly plan. The work is focused on the selection of tasks and their optimal ordering, taking into account their execution in a generic multi-robot system. In order to include all different constraints of the problem, the And/Or graph representation is extended, so that links between nodes corresponding to assembly tasks are added, taking into account the resource constraints. The resultant problem is mapped to a Constraint Satisfaction Problem (CSP), and is solved using Constraint Programming, a powerful programming paradigm that is increasingly used to model and solve many hard real-life problems

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.

    The Effects of Atmospheric Dispersion on High-Resolution Solar Spectroscopy

    Full text link
    We investigate the effects of atmospheric dispersion on observations of the Sun at the ever-higher spatial resolutions afforded by increased apertures and improved techniques. The problems induced by atmospheric refraction are particularly significant for solar physics because the Sun is often best observed at low elevations, and the effect of the image displacement is not merely a loss of efficiency, but the mixing of information originating from different points on the solar surface. We calculate the magnitude of the atmospheric dispersion for the Sun during the year and examine the problems produced by this dispersion in both spectrographic and filter observations. We describe an observing technique for scanning spectrograph observations that minimizes the effects of the atmospheric dispersion while maintaining a regular scanning geometry. Such an approach could be useful for the new class of high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP

    Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei

    Get PDF
    We discuss the experimental and theoretical status of charge-symmetry violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He. Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142, 180, 220, and 256 MeV provides evidence for the presence of CSV. We describe pion scattering from the three-nucleon system in terms of single- and double-scattering amplitudes. External and internal Coulomb interactions as well as the Delta-mass splitting are taken into account as sources of CSV. Reasonable agreement between our theoretical calculations and the experimental data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is found that the Delta-mass splitting and the internal Coulomb interaction are the most important contributions for CSV in the three-nucleon system. The CSV effects are rather sensitive to the choice of pion-nuclear scattering mechanisms, but at the same time, our theoretical predictions are much less sensitive to the choice of the nuclear wave function. It is found, however, that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of our model, which may indicate that there are additional mechanisms for CSV which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure

    Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals

    Full text link
    A sharp resistance drop associated with vortex lattice melting was observed in high quality YBa_2Cu_4O_8 single crystals. The melting line is well described well by the anisotropic GL theory. Two thermally activated flux flow regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T (T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation energy for each region was obtained and the corresponding dissipation mechanism was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8 single crystal melts into disentangled liquid, which then undergoes a 3D-2D decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09

    The rate of colonization by macro-invertebrates on artificial substrate samplers

    Full text link
    The influence of exposure time upon macro-invertebrate colonization on modified Hester-Dendy substrate samplers was investigated over a 60-day period. The duration of exposure affected the number of individuals, taxa and community diversity. The numbers of individuals colonizing the samplers reached a maximum after 39 days and then began to decrease, due to the emergence of adult insects. Coefficients of variation for the four replicate samples retrieved each sampling day fluctuated extensively throughout the study. No tendencies toward increasing or decreasing coefficients of variation were noted with increasing time of sampler exposure. The number of taxa colonizing the samplers increased throughout the study period. The community diversity index was calculated for each sampling day and this function tended to increase throughout the same period. This supports the hypothesis that an exposure period of 6 weeks, as recommended by the United States Environmental Protection Agency, may not always provide adequate opportunity for a truly representative community of macro-invertebrates to colonize multiplate samplers. Many of the taxa were collected in quite substantial proportions after periods of absence or extreme sparseness. This is attributed to the growth of periphyton and the collection of other materials that created food and new habitats suitable for the colonization of new taxa. Investigation of the relationship between ‘equitability’ and length of exposure revealed that equitability did not vary like diversity with increased time of exposure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72073/1/j.1365-2427.1979.tb01522.x.pd

    Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays

    Full text link
    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we have measured ratios of branching fractions for the two-body singly-Cabibbo-suppressed charged decays of the D0: (D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003, (D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and (D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and pi+pi-, and have measured the CP asymmetry parameters A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
    corecore