79 research outputs found

    cAMP Response Element-Binding Protein Deficiency Allows for Increased Neurogenesis and a Rapid Onset of Antidepressant Response

    Get PDF
    cAMP response element-binding protein (CREB) has been implicated in the molecular and cellular mechanisms of chronic antidepressant (AD) treatment, although its role in the behavioral response is unclear. CREB-deficient (CREBαΔ mutant) mice demonstrate an antidepressant phenotype in the tail suspension test (TST) and forced-swim test. Here, we show that, at baseline, CREBαΔ mutant mice exhibited increased hippocampal cell proliferation and neurogenesis compared with wild-type (WT) controls, effects similar to those observed in WT mice after chronic desipramine (DMI) administration. Neurogenesis was not further augmented by chronic DMI treatment in CREBαΔ mutant mice. Serotonin depletion decreased neurogenesis in CREBαΔ mutant mice toWTlevels, which correlated with a reversal of the antidepressant phenotype in the TST. This effect was specific for the reversal of the antidepressant phenotype in these mice, because serotonin depletion did not alter a baseline anxiety-like behavior in CREB mutant mice. The response to chronic AD treatment in the novelty-induced hypophagia (NIH) test may rely on neurogenesis. Therefore, we used this paradigm to evaluate chronic AD treatment in CREB mutant mice to determine whether the increased neurogenesis in these mice alters their response in the NIH paradigm. Whereas both WT and CREBαΔ mutant mice responded to chronic AD treatment in the NIH paradigm, only CREBαΔ mutant mice responded to acute AD treatment. However, in the elevated zero maze, DMI did not reverse anxiety behavior in mutant mice. Together, these data show that increased hippocampal neurogenesis allows for an antidepressant phenotype as well as a rapid onset of behavioral responses to AD treatment

    The future of translational research on alcohol use disorder

    No full text
    In March 2019, a scientific meeting was held at the University of California, Los Angeles (UCLA) Luskin Center to discuss approaches to expedite the translation of neurobiological insights to advances in the treatment of alcohol use disorder (AUD). A guiding theme that emerged was that while translational research in AUD is clearly a challenge, it is also a field ripe with opportunities. Herein, we seek to summarize and disseminate the recommendations for the future of translational AUD research using four sections. First, we briefly review the current landscape of AUD treatment including the available evidence-based treatments and their uptake in clinical settings. Second, we discuss AUD treatment development efforts from a translational science viewpoint. We review current hurdles to treatment development as well as opportunities for mechanism-informed treatment. Third, we consider models of translational science and public health impact. Together, these critical insights serve as the bases for a series of recommendations and future directions. Towards the goal of improving clinical care and population health for AUD, scientists are tasked with bolstering the clinical applicability of their research findings so as to expedite the translation of knowledge into patient care
    corecore