19 research outputs found

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    DAMAGE TO RAT-LIVER MITOCHONDRIA PROMOTED BY DELTA-AMINOLEVULINIC ACID-GENERATED REACTIVE OXYGEN SPECIES - CONNECTIONS WITH ACUTE INTERMITTENT PORPHYRIA AND LEAD-POISONING

    No full text
    delta-Aminolevulinic acid is a heme precursor accumulated in acute intermittent porphyria and lead-poisoning, which supposedly triggers the typical clinical expression associated with these diseases. Considering that: (i) erythrocyte anti-oxidant enzymes are abnormally high in patients with both disorders and (ii) delta-aminolevulinic acid autoxidation generates reactive oxygen species, a possible contribution of reactive oxygen species in the pathophysiology of these disorders is explored here. Evidence is provided that delta-aminolevulinic acid (2-15 mM) induces damage to isolated rat liver mitochondria. Addition of delta-aminolevulinic acid disrupts the mitochondrial membrane potential, promotes Ca2+ release from the intramitochondrial matrix and releases the state-4 respiration, thus enhancing the permeability of the membrane to H+. The lesion was abolished by catalase, superoxide dismutase (both enzymes inhibit delta-aminolevulinic acid autoxidation) and ortho-phenanthroline, but not by mannitol; added H2O2 induces damage poorly. These results suggest the involvement of deleterious reactive oxygen species formed at particular mitochondrial sites from transition metal ions and delta-aminolevulinic acid-generated peroxide and/or superoxide species. These observations might be compatible with previous work showing hepatic mitochondrial damage in liver biopsy samples of acute intermittent porphyria patients.10561576

    Diphenylacetaldehyde-generated excited states promote damage to isolated rat liver mitochondrial DNA, phospholipids, and proteins

    No full text
    This work studies damage to rat liver mitochondrial protein, lipid, and DNA caused by electronically excited states generated by cytochrome c-catalyzed diphenylacetaldehyde enol oxidation to triplet benzophenone. The extension of lipid peroxidation was estimated by production of thiobarbituric acid-reactive substances and by formation of Schiff bases with membrane proteins, evaluated by SDS-polyacrylamide gel electrophoresis. Concomitant with DPAA-driven mitochondrial permeabilization, extensive mtDNA fragmentation occurred and DNA adducts with aldehydes-products of fatty acid oxidation-were observed. The degree of lipid peroxidation and mtDNA alterations were significantly decreased by butylated hydroxytoluene, a potent peroxidation chain breaker. The lipid peroxidation process was also partially inhibited by the bioflavonoid rutin and urate totally prevented the mitochondrial transmembrane potential collapse. In all cases, the mitochondrial damage was dependent on the presence of phosphate ions, a putative bifunctional catalyst of carbonyl enolization. These data are consistent with the notion that triplet ketones may act like alkoxyl radicals as deleterious reactive oxygen species on biologic structures. Involvement of singlet dioxygen formed by triplet-triplet energy transfer from benzophenone in the model reaction with DPAA/cytochrome c in the presence of DCP liposomes was suggested by quenching of the accompanying chemiluminescence upon addition of histidine and lycopene. (C) 1999 Elsevier Science Inc.274185874475

    CHEMILUMINESCENT DIPHENYLACETALDEHYDE OXIDATION BY MITOCHONDRIA IS PROMOTED BY CYTOCHROMES AND LEADS TO OXIDATIVE INJURY OF THE ORGANELLE

    No full text
    Plant and animal mitochondria promote the aerobic oxidation of diphenylacetaldehyde (DPAA). This process is accompanied by chemiluminescence and rotenone-insensitive oxygen uptake. In rat liver and potato tubers, mitochondrial swelling is concurrently detected. Light emission and oxygen consumption decreased (about 50%) in cytochrome c-depleted mitochondria. A model system-cytochrome c or b5/dihexadecylphosphate liposomes-was also able to oxidize DPAA with parallel reduction of the cytochrome. Reduction of respiratory complex I or I plus II by addition of rotenone or antimycin A, respectively, did not prevent DPAA oxidation. However, when all cytochrome was reduced by addition of cyanide, aldehyde oxidation was completely suppressed. Altogether these data indicate that respiratory cytochromes are responsible for DPAA oxidation with production of excited species and consequent mitochondrial permeabilization.62352252

    Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions - A proposed model for phosphate-stimulated lipid peroxidation

    No full text
    Addition of high concentrations (>1 mM) of inorganic phosphate (P-i) or arsenate to Ca2+-loaded mitochondria was followed by increased rates of H2O2 production, membrane lipid peroxidation, and swelling. Mitochondrial swelling was only partially prevented either by butylhydroxytoluene, an inhibitor of lipid peroxidation, or cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. This swelling was totally prevented by the simultaneous presence of these compounds. At lower P-i concentrations (1 mM), mitochondrial swelling is reversible and prevented by cyclosporin A, but not by butylhydroxytoluene. In any case (low or high phosphate concentration) exogenous catalase prevented mitochondrial swelling, suggesting that reactive oxygen species (ROS) participate in these mechanisms. Altogether, the data suggest that, at low P-i concentrations, membrane permeabilization is reversible and mediated by opening of the mitochondrial permeability transition pore, whereas at high P-i concentrations, membrane permeabilization is irreversible because lipid peroxidation also takes place. Under these conditions, lipid peroxidation is strongly inhibited by sorbate, a putative quencher of triplet carbonyl species. This suggests that high P-i or arsenate concentrations stimulate propagation of the peroxidative reactions initiated by mitochondrial-generated ROS because these anions are able to catalyze C-n-aldehyde tautomerization producing enols, which can be oxidized by hemeproteins to yield the lower C-n-1-aldehyde in the triplet state. This proposition was also supported by experiments using a model system consisting of phosphatidyl-choline/dicethylphosphate liposomes and the triplet acetone-generating system isobutanal/horseradish peroxidase, where phosphate and Ca2+ cooperate to increase the yield of thiobarbituric acid-reactive substances.27162929293
    corecore