7,362 research outputs found

    Generation of optimal trajectories for Earth hybrid pole sitters

    Get PDF
    A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Global Trajectory Optimisation : Can We Prune the Solution Space When Considering Deep Space Manoeuvres? [Final Report]

    Get PDF
    This document contains a report on the work done under the ESA/Ariadna study 06/4101 on the global optimization of space trajectories with multiple gravity assist (GA) and deep space manoeuvres (DSM). The study was performed by a joint team of scientists from the University of Reading and the University of Glasgow

    Displaced geostationary orbit design using hybrid sail propulsion

    Get PDF
    Because of an increase in the number of geostationary spacecraft and the limits imposed by east–west spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize propellant consumption, optimal steering laws for the solar sail and solar-electric-propulsion thrust vectors are derived and the performance in terms of mission lifetime is assessed. For comparison, similar analyses are performed for conventional propulsion, including impulsive and pure solar electric propulsion. It is shown that hybrid sails outperform these propulsion techniques and that out-of-plane displacements outperform in-plane displacements. The out-of-plane case is therefore further investigated in a spacecraft mass budget to determine the payload mass capacity. Finally, two transfers that enable a further improvement of the performance of hybrid sails for the out-of-plane case are optimized using a direct pseudospectral method: a seasonal transit between orbits displaced above and below the equatorial plane and a transit to a parking orbit when geostationary coverage is not needed. Both transfers are shown to require only a modest propellant budget, outweighing the improvements they can establish
    • …
    corecore