4 research outputs found

    Non-extensivity Parameter of Thermodynamical Model of Hadronic Interactions at LHC energies

    Full text link
    The LHC measurements above SPS and Tevatron energies give the opportunity to test predictions of non-extensive thermodynamical picture of hadronic interaction to examine measured transverse momenta distributions for new interaction energy range. We determined Tsallis model non-extensivity parameter for the hadronization process before short-lived particles decayed and distort the initial p_t distribution. We have shown that it follows exactly smooth rise determined at lower energies below present LHC record. The shape of the q parameter energy dependence is consistent with expectations and the evidence of the asymptotic limit may be seen.Comment: 2 pages, 2 figure

    Predictions of hadron abundances in pp collisions at the LHC

    Get PDF
    Based on the statistical hadronization model, we obtain quantitative predictions for the relative abundances of hadron species in pp collisions at the LHC. By using the parameters of the model determined at sqrt s = 200 GeV, and extrapolating the overall normalization from ppbar collisions at the SPS and Tevatron, we find that the expected rapidity densities are almost grand-canonical. Therefore, at LHC the ratios between different species become essentially energy-independent, provided that the hadronization temperature T_H and the strangeness suppression factor gamma_S retain the stable values observed in the presently explored range of pp and ppbar collisions.Comment: 4 pages. Final version published in JP

    Statistical hadronization phenomenology in K/πK/\pi fluctuations at ultra-relativistic energies

    Full text link
    We discuss the information that can be obtained from an analysis of fluctuations in heavy ion collisions within the context of the statistical model of particle production. We then examine the recently published experimental data on ratio fluctuations, and use it to obtain constraints on the statistical properties (physically relevant ensemble, degree of chemical equilibration, scaling across energies and system sizes) and freeze-out dynamics (amount of reinteraction between chemical and thermal freeze-out) of the system.Comment: Proceedings, SQM2009. Fig. 4, the main results figure, was wrong due to editing mistake, now correcte

    A comparative analysis of statistical hadron production

    No full text
    Becattini F, Castorina P, Milov A, Satz H. A comparative analysis of statistical hadron production. EUROPEAN PHYSICAL JOURNAL C. 2010;66(3-4):377-386.We perform a systematic comparison of the statistical model parametrization of hadron abundances observed in high-energy pp, AA and e (+) e (-) collisions. The basic aim of the study is to test if the quality of the description depends on the nature of the collision process. In particular, we want to see if nuclear collisions, with multiple initial interactions, lead to "more thermal" average multiplicities than elementary pp collisions or e (+) e (-) annihilation. Such a comparison is meaningful only if it is based on data for the same or similar hadronic species and if the analyzed data has quantitatively similar errors. When these requirements are maintained, the quality of the statistical model description is found to be the same for the different initial collision configurations
    corecore