3 research outputs found

    The Linked Data Benchmark Council (LDBC): Driving competition and collaboration in the graph data management space

    Full text link
    Graph data management is instrumental for several use cases such as recommendation, root cause analysis, financial fraud detection, and enterprise knowledge representation. Efficiently supporting these use cases yields a number of unique requirements, including the need for a concise query language and graph-aware query optimization techniques. The goal of the Linked Data Benchmark Council (LDBC) is to design a set of standard benchmarks that capture representative categories of graph data management problems, making the performance of systems comparable and facilitating competition among vendors. LDBC also conducts research on graph schemas and graph query languages. This paper introduces the LDBC organization and its work over the last decade

    The Linked Data Benchmark Council (LDBC): Driving competition and collaboration in the graph data management space

    Get PDF
    Graph data management is instrumental for several use cases such as recommendation, root cause analysis, financial fraud detection, and enterprise knowledge representation. Efficiently supporting these use cases yields a number of unique requirements, including the need for a concise query language and graph-aware query optimization techniques. The goal of the Linked Data Benchmark Council (LDBC) is to design a set of standard benchmarks that capture representative categories of graph data management problems, making the performance of systems comparable and facilitating competition among vendors. LDBC also conducts research on graph schemas and graph query languages. This paper introduces the LDBC organization and its work over the last decade

    The OneGraph vision : Challenges of breaking the graph model lock-in

    No full text
    Amazon Neptune is a graph database service that supports two graph models: W3Cs Resource Description Framework (RDF) and Labeled Property Graphs (LPG). Customers choose one or the other model. This choice determines which data modeling features can be used and - perhaps more importantly - which query languages are available. The choice between the two technology stacks is difficult and time consuming. It requires consideration of data modeling aspects, query language features, their adequacy for current and future use cases, as well as developer knowledge. Even in cases where customers evaluate the pros and cons and make a conscious choice that fits their use case, over time we often see requirements from new use cases emerge that could be addressed more easily with a different data model or query language. It is therefore highly desirable that the choice of the query language can be made without consideration of what graph model is chosen and can be easily revised or complemented at a later point. To this end, we advocate and explore the idea of OneGraph ("1G" for short), a single, unified graph data model that embraces both RDF and LPGs. The goal of 1G is to achieve interoperability at both data level, by supporting the co-existence of RDF and LPG in the same database, as well as query level, by enabling queries and updates over the unified data model with a query language of choice. In this paper, we sketch our vision and investigate technical challenges towards a unification of the two graph data models
    corecore