23 research outputs found

    Novel mechanisms of resistance to vemurafenib in melanoma – V600E B-Raf reversion and switching VEGF-A splice isoform expression

    Get PDF
    Targeting activating mutations in the proto-oncogene B-Raf, in melanoma, has led to increases in progression free survival. Treatment with vemurafenib, which inhibits the most common activating-mutated form of B-Raf (B-RafV600E), eventually results in resistance to therapy. VEGF-A is the principal driver of angiogenesis in primary and metastatic lesions. The bioactivity of VEGF-A is dependent upon alternative RNA splicing and pro-angiogenic isoforms of VEGF-A are upregulated in many disease states dependent upon angiogenesis, including cancers. Using techniques including RT-PCR, Western blotting, ELISA and luciferase reporter assays, the effect of vemurafenib on proliferation, ERK1/2 phosphorylation and the levels of pro- and anti-angiogenic VEGF-A isoforms was investigated in melanoma cell types expressing either wild-type B-Raf or B-RafV600E, including a primary melanoma culture derived from a highly vascularised and active nodule taken from a patient with a V600E mutant melanoma. The primary melanoma culture was characterised and found to have reverted to wild-type B-Raf. In B-RafV600E A375 cells ERK1/2 phosphorylation, pro-angiogenic VEGF-A mRNA, total VEGF-A protein expression and VEGF-A 3’UTR activity were all decreased in a concentration-dependent manner by vemurafenib. Conversely vemurafenib treatment of wild-type B-Raf cells significantly increased ERK1/2 phosphorylation, pro-angiogenic VEGF-A mRNA and total VEGF-A expression in a concentration-dependent manner. A switch to pro-angiogenic VEGF-A isoforms, with a concomitant upregulation of expression by increasing VEGF-A mRNA stability, may be an additional oncogenic and pathological mechanism in B-RafV600E melanomas, which promotes tumor-associated angiogenesis and melanoma-genesis. We have also identified the genetic reversal of B-RafV600E to wild-type in an active melanoma nodule taken from a V600E-positive patient and continued vemurafenib treatment for this patient is likely to have had a detrimental effect by promoting B-RafWT activity

    Sensory neuronal sensitisation occurs through HMGB-1/RAGE and TRPV1 in high glucose conditions

    Get PDF
    Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE agonist, increased in diabetes, that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness. HMGB1 and RAGE expression were increased in skin and primary sensory (DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated calcium responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked calcium responses in DRG neurons were RAGE and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant, VEGF-A165b. Pain behaviour and DRG RAGE expression increases were blocked by VEGF-A 165 b treatment of diabetic rats in vivo. HMGB-1-RAGE activation sensitizes DRG neurons in vitro. VEGF-A165b blocks HMGB-1/RAGE DRG activation, which may contribute to its analgesic properties in vivo

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    A role for pericytes in chronic pain?

    No full text
    Purpose of review The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. Recent findings Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. Summary Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.</p

    The physiological functions of central nervous system pericytes and a potential role in pain [version 1; referees: 2 approved]

    No full text
    Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states

    Targeting BRAF

    No full text

    METTL3 Regulates Angiogenesis by Modulating let-7e-5p and miRNA-18a-5p Expression in Endothelial Cells

    No full text
    Objective:Postnatal angiogenesis is critical in vascular homeostasis and repair. m6A RNA methylation is emerging as a new layer for fine-tuning gene expression. Although the contribution of the m6A-catalyzing enzyme, METTL3 (methyltransferase-like 3), in cancer biology has been described, its role in endothelial cell (EC) function, particularly during angiogenesis, remains unclear.Approach and Results:To characterize the relevance of METTL3 in angiogenesis regulation, we performed gain- and loss-of-function studies in vitro. We demonstrated that depletion of METTL3 in ECs reduced the level of m6A and impaired EC function, whereas adenovirus-mediated METTL3 overexpression increased angiogenesis. Mechanistically, we showed that METTL3 depletion in ECs decreased mature angiogenic microRNAs let-7e-5p and the miR-17-92 cluster, and increased the expression of their common target, Tsp1 (thrombospondin 1). Conversely, Ad.METTL3 increased the expression of let-7e-5p and miR-17-92 cluster and reduced protein levels of Tsp1 in ECs. Moreover, overexpression of let-7e-5p and miR-18a-5p restored the angiogenic potential of METTL3-depleted ECs. We corroborated our data in vivo employing 3 mouse models. When tested in an in vivo Matrigel plug assay, METTL3-depleted ECs had diminished ability to vascularize the plug, whereas overexpression of METTL3 promoted angiogenesis. Local Ad.METTL3 gene transfer increased postischemic neovascularization in mice with either unilateral limb ischemia or myocardial infarction.Conclusions:METTL3 regulates m6A RNA methylation in ECs. Endogenous METTL3 is essential for EC function and angiogenesis, potentially through influencing let-7e and miR-17-92 cluster processing. Thus, the therapeutic modulation of METTL3 should be considered as a new approach for controlling angiogenic responses in the clinical setting
    corecore