26 research outputs found

    Cross-Reactive Memory CD4\u3csup\u3e+\u3c/sup\u3e and CD8\u3csup\u3e+\u3c/sup\u3e T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice: A Dissertation

    Get PDF
    Dengue virus (DENV) infects 50-100 million people worldwide every year and is the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four genetically and immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Evidence suggests that an increased risk for DHF/DSS during secondary infection with a heterologous DENV serotype is due to an immunopathological response mediated by serotype-cross-reactive memory T cells from the primary infection. Furthermore, epidemiological studies have shown that the sequence of infection with different DENV serotypes affects disease severity. Though much has been learned from human studies, there exist uncontrollable variables that are intrinsic in this system such as genetic factors and unknown infection histories. These factors can skew experimental results, making interpretations difficult. Therefore, a murine model to study the immunologic aspects of sequential dengue infections would be an asset to the field of dengue research. To examine the effect of sequential infection with different DENV serotypes on the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on day 0 and subsequently challenged with a heterologous secondary DENV infection on day 28. We tested all possible sequences of infection with the four serotypes. We analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-restricted) and NS3 (Kd-restricted) proteins. Using ELISPOT and intracellular cytokine staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to stimulation with these epitopes during three phases: acute primary, acute secondary, and the memory phase after primary infection. We found that the T cell response in heterologous secondary infections was higher in magnitude than the response in acute primary infection or during the memory phase. We also found that the hierarchy of epitope specific responses, as measured by IFNγ secretion, was influenced by the sequence of infections. The adoptive transfer of immune serum or immune splenocytes suggested that memory T cells from the primary infection responded to antigens from the secondary infection. In vitroexperiments with T cell lines generated from mice with primary and secondary DENV infections suggested the preferential expansion of crossreactive memory T cells. In testing all of the different possible sequences of infection, we observed that two different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide even though both secondary infection serotypes contain the identical peptide sequence. To investigate this phenomenon, we examined the role of CD4+ T cell help on the memory CD8+ T cell response. We found that CD4+ T cell cytokine responses differ depending on the sequence of infection. In addition, it was also shown that crossreactivities of the CD4+ T cell response are also sequence-dependent. Moreover, denguespecific memory CD4+ T cells can augment the secondary CD8+ T cell response. Taken together, we demonstrated that this serotype sequence-dependent phenomenon is the result of differential help provided by cross-reactive memory CD4+T cells. The findings in this novel mouse model support the hypothesis that both CD4+ and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection alter the immune response during a heterologous secondary dengue virus infection. These data further elucidate potential mechanisms whereby the specific sequence of infection with different dengue virus serotypes influences disease outcomes in humans

    Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner

    No full text
    Dengue virus is the causative agent of dengue fever and the more-severe dengue hemorrhagic fever (DHF). Human studies suggest that the increased risk of DHF during secondary infection is due to immunopathology partially mediated by cross-reactive memory T cells from the primary infection. To model T cell responses to sequential infections, we immunized mice with different sequences of dengue virus serotypes and measured the frequency of peptide-specific T cells after infection. The acute response after heterologous secondary infections was enhanced compared with the acute or memory response after primary infection. Also, the hierarchy of epitope-specific responses was influenced by the specific sequence of infection. Adoptive-transfer experiments showed that memory T cells responded preferentially to the secondary infection. These findings demonstrate that cross-reactive T cells from a primary infection alter the immune response during a heterologous secondary infection

    HIV-1 replication increases HIV-specific CD4+ T cell frequencies but limits proliferative capacity in chronically infected children

    No full text
    This study investigated the relationship between HIV-1 replication and virus (HIV-1; CMV)-specific CD4(+) T cell frequency and function in HIV-1-infected children. HIV-1 gag p55-specific CD4(+) T cell IFN-gamma responses were detected in the majority of children studied. p55-specific responses were detected less commonly and at lower frequencies in children with/ml plasma HIV-1 RNA than in children with active HIV-1 replication. In children with/ml plasma HIV-1, p55-specific responses were detected only in children with evidence of ongoing HIV-1 replication, indicating a direct relationship between HIV-1 replication and HIV-specific CD4(+) T cell frequencies. In contrast, p55-specific proliferative responses were detected more frequently in children with/ml plasma HIV-1. CMV-specific CD4(+) responses were more commonly detected and at higher frequencies in CMV-coinfected children with suppressed HIV-1 replication. The lack of HIV-specific CD4(+) proliferative responses, along with the preservation of CMV-specific CD4(+) responses in children with controlled HIV-1 replication, suggests that viral replication may have deleterious effects on HIV-1 and other virus-specific CD4(+) responses. Vaccination to stimulate HIV-specific CD4(+) T cell responses in these children may synergize with antiretroviral therapy to improve the long-term control of viral replication, and may perhaps allow the eventual discontinuation of antiretroviral therapy

    HIV-1 Replication Increases HIV-Specific CD4 +

    No full text

    Cross-Reactive Memory CD4+ T Cells Alter the CD8+ T-Cell Response to Heterologous Secondary Dengue Virus Infections in Mice in a Sequence-Specific Manner

    No full text
    Secondary dengue virus (DENV) infection is a major factor contributing to the risk for severe disease, an effect that depends upon the sequence of infection with different DENV serotypes. We previously reported sequence-dependent effects of secondary DENV infection on CD8+ T-cell responses in mice. To further evaluate the effect of infection sequence, we analyzed DENV-specific CD4+ T-cell responses and their relationship to the CD8+ T-cell response. Serotype cross-reactivity of CD4+ T-cell responses also depended upon the sequence of serotypes in this model. Furthermore, adoptive transfer of memory CD4+ T cells altered the response of memory CD8+ T cells to secondary infection. These data demonstrate the interaction of different components of the T-cell response in determining the immunological outcome of secondary DENV infection

    Ongoing conflicts around the world.

    No full text
    <p>Dark red: Major wars, 1,000+ deaths per year. Orange: Minor skirmishes and conflicts, fewer than 1,000 deaths per year.</p
    corecore