647 research outputs found

    Thermally-induced expansion in the 8 GeV/c π−\pi^- + 197^{197}Au reaction

    Full text link
    Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c π−\rm{\pi^-} beams incident on a 197\rm{^{197}}Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic energies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A ≈\rm{\approx} 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.Comment: 12 pages including 4 postscript figure

    Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation

    Get PDF
    Excitation-energy-gated two-fragment correlation functions have been studied between 2 to 9A MeV of excitation energy for equilibrium-like sources formed in π−\pi^- and p + 197^{197}Au reactions at beam momenta of 8,9.2 and 10.2 GeV/c. Comparison of the data to an N-body Coulomb-trajectory code shows a decrease of one order of magnitude in the fragment emission time in the excitation energy interval 2-5A MeV, followed by a nearly constant breakup time at higher excitation energy. The observed decrease in emission time is shown to be strongly correlated with the increase of the fragment emission probability, and the onset of thermally-induced radial expansion. This result is interpreted as evidence consistent with a transition from surface-dominated to bulk emission expected for spinodal decomposition.Comment: 11 pages including 3 postscript figures (1 color

    Limits on Stellar and Planetary Companions in Microlensing Event OGLE-1998-BUL-14

    Get PDF
    We present the PLANET photometric data set for \ob14, a high magnification (Amax∌16A_{\rm max}\sim 16) event alerted by the OGLE collaboration toward the Galactic bulge in 1998. The PLANET data set consists a total of 461 I-band and 139 V−V-band points, the majority of which was taken over a three month period. The median sampling interval during this period is about 1 hour, and the 1σ1\sigma scatter over the peak of the event is 1.5%. The excellent data quality and high maximum magnification of this event make it a prime candidate to search for the short duration, low amplitude perturbations that are signatures of a planetary companion orbiting the primary lens. The observed light curve for \ob14 is consistent with a single lens (no companion) within photometric uncertainties. We calculate the detection efficiency of the light curve to lensing companions as a function of the mass ratio and angular separation of the two components. We find that companions of mass ratio ≄0.01\ge 0.01 are ruled out at the 95% confidence level for projected separations between 0.4-2.4 \re, where \re is the Einstein ring radius of the primary lens. Assuming that the primary is a G-dwarf with \re\sim3 {\rm AU} our detection efficiency for this event is ∌60\sim 60% for a companion with the mass and separation of Jupiter and ∌5\sim5% for a companion with the mass and separation of Saturn. Our efficiencies for planets like those around Upsilon And and 14 Her are > 75%.Comment: Data available at http://www.astro.rug.nl/~planet/planetpapers.html 20 pages, 10 figures. Minor changes. ApJ, accepte

    First Order Phase Transition in Intermediate Energy Heavy Ion Collisions

    Get PDF
    We model the disassembly of an excited nuclear system formed as a result of a heavy ion collision. We find that, as the beam energy in central collisions in varied, the dissociating system crosses a liquid-gas coexistence curve, resulting in a first-order phase transition. Accessible experimental signatures are identified: a peak in specific heat, a power-law yield for composites, and a maximum in the second moment of the yield distribution

    Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlense H alpha line

    Full text link
    We discuss high-resolution, time-resolved spectra of the caustic exit of the binary microlensing event OGLE 2002-BUL-69 obtained with UVES on the VLT. The source star is a G5III giant in the Galactic Bulge. During such events, the source star is highly magnified, and a strong differential magnification around the caustic resolves its surface. Using an appropriate model stellar atmosphere generated by the NextGEN code we obtained a model light curve for the caustic exit and compared it with a dense set of photometric observations obtained by the PLANET microlensing follow up network. We further compared predicted variations in the H alpha equivalent width with those measured from our spectra. While the model and observations agree in the gross features, there are discrepancies suggesting shortcomings in the model, particularly for the H alpha line core, where we have detected amplified emission from the stellar chromosphere as the source star's trailing limb exited the caustic. This achievement became possible by the provision of the OGLE-III Early Warning System, a network of small telescopes capable of nearly-continuous round-the-clock photometric monitoring, on-line data reduction, daily near-real-time modelling in order to predict caustic crossing parameters, and a fast and efficient response of a 8m-class telescope to a ``Target-Of-Opportunity'' observation request.Comment: 4 pages Latex, 3 figures, accepted for publication to astronomy and astrophysics letter

    A Complete Set of Solutions For Caustic-Crossing Binary Microlensing Events

    Get PDF
    We present a method to analyze binary-lens microlensing light curves with one well-sampled fold caustic crossing. In general, the surface of chi^2 shows extremely complicated behavior over the 9-parameter space that characterizes binary lenses. This makes it difficult to systematically search the space and verify that a given local minimum is a global minimum. We show that for events with well-monitored caustics, the caustic-crossing region can be isolated from the rest of the light curve and easily fit to a 5-parameter function. Four of these caustic-crossing parameters can then be used to constrain the search in the larger 9-parameter space. This allows a systematic search for all solutions and thus identification of all local minima. We illustrate this technique using the PLANET data for MACHO 98-SMC-1, an excellent and publicly available caustic-crossing data set. We show that a very broad range of parameter combinations are compatible with the PLANET data set, demonstrating that observations of binary-lens lightcurves with sampling of only one caustic crossing do not yield unique solutions. The corollary to this is that the time of the second caustic crossing cannot be reliably predicted on the basis of early data including the first caustic crossing alone. We investigate the requirements for determination of a unique solution and find that occasional observations of the first caustic crossing may be sufficient to derive a complete solution.Comment: 31 pages + 8 figures + 2 table
    • 

    corecore